Как указать степень окисления атомов в веществе. Как расставлять и как определить степень окисления элементов

Для характеристики состояния элементов в соединениях введено понятие степени окисления. Под степенью окисления понимается условный заряд атома в соединении, вычисленный исходя из предположения, что соединение состоит из ионов. Степень окисления обозначается арабской цифрой, которую ставят перед символом элемента, со знаком «+» или «−», соответствующим отдаче или приобретению электронов. Степень окисления представляет собой всего лишь удобную форму для учета переноса электронов, ее не следует рассматривать ни как эффективный заряд атома в молекуле (например, в молекуле LiF эффективные заряды Li и F равны соответственно +0,89 и −0,89, тогда как степени окисления +1 и −1), ни как валентность элемента (например в соединениях CH 4 , CH 3 OH, HCOOH, CO 2 валентность углерода равна 4, а степени окисления соответственно равны −4, −2, +2, +4).

Численные значения валентности и степени окисления могут совпадать по абсолютной величине лишь при образовании соединений с ионной связью. При определении степени окисления используют следующие правила:

1. Атомы элементов, находящихся в свободном состоянии или в виде молекул простых веществ, имеют степень окисления, равную нулю, например Fe, Cu, H 2 , N 2 и т.п.

2. Степень окисления элемента в виде одноатомного иона в соединении, имеющем ионное строение, равна заряду данного иона, например,

3. Водород в большинстве соединений имеет степень окисления +1, за исключением гидридов металлов (NaH, LiH), в которых степень окисления водорода равна −1.

Наиболее распространенная степень окисления кислорода в соединениях –2, за исключением пероксидов (Na 2 O 2 , Н 2 О 2 – степень окисления кислорода равна −1) и F 2 O (степень окисления кислорода равна +2).

Для элементов с непостоянной степенью окисления ее значение можно рассчитать, зная формулу соединения и учитывая, что сумма степеней окисления всех атомов в молекуле равна нулю. В сложном ионе эта сумма равна заряду иона. Например, степень окисления атома хлора в молекуле HClO 4 , вычисленная исходя из суммарного заряда молекулы = 0, х – степень окисления атома хлора), равна +7. Степень окисления атома серы в ионе SO равна +6.

Окислительно-восстановительные свойства элемента зависят от степени его окисления. У атомов одного и того же элемента различают низшую , высшую и промежуточные степени окисления .

Зная степень окисления элемента в соединении, можно предсказать, окислительные или восстановительные свойства это соединение проявляет.

В качестве примера рассмотрим серу S и ее соединения H 2 S, SO 2 и SO 3 . Связь между электронной структурой атома серы и его окислительно-восстановительными свойствами в этих соединениях наглядно представлена в таблице 7.1.


Химия подготовка к ЗНО и ДПА
Комплексное издание

ЧАСТЬ И

ОБЩАЯ ХИМИЯ

ХИМИЧЕСКАЯ СВЯЗЬ И СТРОЕНИЕ ВЕЩЕСТВА

Степень окисления

Степень окисления - это условный заряд на атоме в молекуле или кристалле, который возник на нем, когда бы все полярные связи, созданные им, имели ионный характер.

На отличие от валентности, степени окисления может быть положительным, отрицательным или равняться нулю. В простых ионных соединениях степень окисления совпадает с зарядами ионов. Например, в натрий хлориде NaCl (Na + Cl - ) Натрий имеет степень окисления +1, а Хлор -1, в кальций оксиде СаО (Са +2 О -2) Кальций проявляет степень окисления +2, а Оксисен - -2. Это правило распространяется на все основные оксиды: степень окисления металлического элемента равен заряду иона металла (Натрия +1, Бария +2, Алюминия +3), а степень окисления Кислорода равна-2. Степень окисления обозначают арабскими цифрами, которые ставят над символом элемента, подобно валентности, причем вначале указывают знак заряда, а потом его численное значение:

Если модуль степени окисления равна единице, то число «1» можно не ставить и писать только знак: Na + Cl - .

Степень окисления и валентность - родственные понятия. Во многих соединениях абсолютная величина степени окисления элементов совпадает с их валентностью. Однако существует немало случаев, когда валентность отличается от степени окисления.

В простых веществах - неметалах существует ковалентная неполярная связь, совместная электронная пара смещается к одному из атомов, поэтому степень окисления элементов в простых веществ всегда равна нулю. Но атомы друг с другом связаны, то есть проявляют определенную валентность, как, например, в кислороде валентность Кислорода равна II, а в азоте валентность Азота - III:

В молекуле водород пероксида валентность Кислорода также равна II, а Водорода - И:

Определение возможных степеней окисления элементов

Степени окисление, какие элементы могут проявлять в различных соединениях, в большинстве случаев можно определить по строению внешнего электронного уровня или по местом элемента в Периодической системе.

Атомы металлических элементов могут только отдавать электроны, поэтому в соединениях они проявляют положительные степени окисления. Его абсолютное значение во многих случаях (за исключением d -элементов) равен числу электронов на внешнем уровне, то есть номера группы в Периодической системе. Атомы d -элементов могут также отдавать электроны с передзовнішнього уровня, а именно - с незаполненных d -орбиталей. Поэтому для d -элементов определить все возможные степени окисления значительно сложнее, чем для s - и р-элементов. С уверенностью можно утверждать, что большинство d -элементов проявляют степень окисления +2 благодаря электронам внешнего электронного уровня, а максимальная степень окисления в большинстве случаев равен номеру группы.

Атомы неметаллических элементов могут проявлять как положительные, так и отрицательные степени окисление, в зависимости от того, с атомом какого элемента они образуют связь. Если элемент более электроотрицательным, то он проявляет негативное степень окисления, а если менее электроотрицательный - положительный.

Абсолютное значение степени окисления неметаллических элементов можно определить по строению внешнего электронного слоя. Атом способен принять столько электронов, чтобы на его внешнем уровне расположилось восемь электронов: неметаллические элементы VII группы принимают один электрон и проявляют степень окисления -1, VIгруппы - два электроны и проявляют степень окисления -2 и т.д.

Неметаллические элементы способны отдавать разное число электронов: максимум столько, сколько расположено на внешнем энергетическом уровне. Иначе говоря, максимальный степень окисления неметаллических элементов равна номеру группы. Благодаря промотуванню электронов на внешнем уровне атомов число неспаренных электронов, которые атом может отдавать в химических реакциях, бывает разным, поэтому неметаллические элементы способны обнаруживать различные промежуточные значения степени окисления.

Возможны степени окисления s - и р-элементов

Группа ПС

Высшую степень окисления

Промежуточный степень окисления

Ниже степень окисления

Определение степеней окисления в соединениях

Любая электронейтральная молекула, поэтому сумма степеней окисления атомов всех элементов должна равняться нулю. Определим степень окисления в сульфур(И V ) оксиде SO 2 тауфосфор(V ) сульфіді P 2 S 5 .

Сульфур(И V ) оксид SO 2 образован атомами двух элементов. Из них электроотрицательности большая у Кислорода, поэтому атомы Кислорода будут иметь негативный степень окисления. Для Кислорода он равен-2. В этом случае Сульфур оказывает положительное степень окисления. В различных соединениях Сульфур может проявлять разные степени окисления, поэтому в этом случае его необходимо вычислить. В молекуле SO 2 два атома Кислорода со степенью окисления -2, поэтому общий заряд атомов Кислорода равна-4. Для того, чтобы молекула была електронейтральною, атом Серы имеет полностью нейтрализовать заряд обоих атомов Кислорода, поэтому степень окисления Серы равна +4:

В молекуле фосфор( V ) сульфида P 2 S 5 более електронегативним элементом является Сульфур, то есть он проявляет негативное степень окисления, а Фосфор - положительный. Для Серы негативный степень окисления составляет только 2. Вместе пять атомов Серы несут отрицательный заряд, равный-10. Поэтому два атома Фосфора имеют нейтрализовать этот заряд с общим зарядом +10. Поскольку атомов Фосфора в молекуле два, то каждый должен иметь степень окисления +5:

Сложнее вычислять степень окисления не в бинарных соединениях - солях, основаниях и кислотах. Но для этого также следует воспользоваться принципом электронейтральности, а еще помнить о том, что в большинстве соединений степень окисления Кислорода составляет -2, Водорода +1.

Рассмотрим это на примере калий сульфата K 2 SO 4 . Степень окисления Калия в соединениях может быть только +1, а Кислорода -2:

С принципа электронейтральности вычисляем степень окисления Серы:

2(+1) + 1 (х) + 4 (-2) = 0, откуда х = +6.

При определении степеней окисления элементов в соединениях следует придерживаться таких правил:

1. Степень окисления элемента в простом веществе равна нулю.

2. Фтора - наиболее электроотрицательный химический элемент, поэтому степень окисления Фтора в всех соединениях равна-1.

3. Оксиген - наиболее электроотрицательный элемент после Фтора, поэтому степень окисления Кислорода во всех соединениях, кроме фторидов, отрицательный: в большинстве случаев он равна -2, а в пероксидах - -1.

4. Степень окисления Водорода в большинстве соединений равна +1, а в соединениях с металлическими элементами (гидридах) - -1.

5. Степень окисления металлов в соединениях всегда положительный.

6. Более электроотрицательный элемент всегда имеет отрицательный степень окисления.

7. Сумма степеней окисления всех атомов в молекуле равна нулю.


В химии термины «окисление» и «восстановление» означает реакции, при которых атом или группа атомов теряют или, соответственно, приобретают электроны. Степень окисления - это приписываемая одному либо нескольким атомам численная величина, характеризующая количество перераспределяемых электронов и показывающая, каким образом эти электроны распределяются между атомами при реакции. Определение этой величины может быть как простой, так и довольно сложной процедурой, в зависимости от атомов и состоящих из них молекул. Более того, атомы некоторых элементов могут обладать несколькими степенями окисления. К счастью, для определения степени окисления существуют несложные однозначные правила, для уверенного пользования которыми достаточно знания основ химии и алгебры.

Шаги

Часть 1

Определение степени окисления по законам химии

    Определите, является ли рассматриваемое вещество элементарным. Степень окисления атомов вне химического соединения равна нулю. Это правило справедливо как для веществ, образованных из отдельных свободных атомов, так и для таких, которые состоят из двух, либо многоатомных молекул одного элемента.

    • Например, Al (s) и Cl 2 имеют степень окисления 0, поскольку оба находятся в химически несвязанном элементарном состоянии.
    • Обратите внимание, что аллотропная форма серы S 8 , или октасера, несмотря на свое нетипичное строение, также характеризуется нулевой степенью окисления.
  1. Определите, состоит ли рассматриваемое вещество из ионов. Степень окисления ионов равняется их заряду. Это справедливо как для свободных ионов, так и для тех, которые входят в состав химических соединений.

    • Например, степень окисления иона Cl - равняется -1.
    • Степень окисления иона Cl в составе химического соединения NaCl также равна -1. Поскольку ион Na, по определению, имеет заряд +1, мы заключаем, что заряд иона Cl -1, и таким образом степень его окисления равна -1.
  2. Учтите, что ионы металлов могут иметь несколько степеней окисления. Атомы многих металлических элементов могут ионизироваться на разные величины. Например, заряд ионов такого металла как железо (Fe) равняется +2, либо +3. Заряд ионов металла (и их степень окисления) можно определить по зарядам ионов других элементов, с которыми данный металл входит в состав химического соединения; в тексте этот заряд обозначается римскими цифрами: так, железо (III) имеет степень окисления +3.

    • В качестве примера рассмотрим соединение, содержащее ион алюминия. Общий заряд соединения AlCl 3 равен нулю. Поскольку нам известно, что ионы Cl - имеют заряд -1, и в соединении содержится 3 таких иона, для общей нейтральности рассматриваемого вещества ион Al должен иметь заряд +3. Таким образом, в данном случае степень окисления алюминия равна +3.
  3. Степень окисления кислорода равна -2 (за некоторыми исключениями). Почти во всех случаях атомы кислорода имеют степень окисления -2. Есть несколько исключений из этого правила:

    • Если кислород находится в элементарном состоянии (O 2), его степень окисления равна 0, как и в случае других элементарных веществ.
    • Если кислород входит в состав перекиси , его степень окисления равна -1. Перекиси - это группа соединений, содержащих простую кислород-кислородную связь (то есть анион перекиси O 2 -2). К примеру, в составе молекулы H 2 O 2 (перекись водорода) кислород имеет заряд и степень окисления -1.
    • В соединении с фтором кислород обладает степенью окисления +2, читайте правило для фтора ниже.
  4. Водород характеризуется степенью окисления +1, за некоторыми исключениями. Как и для кислорода, здесь также существуют исключения. Как правило, степень окисления водорода равна +1 (если он не находится в элементарном состоянии H 2). Однако в соединениях, называемых гидридами, степень окисления водорода составляет -1.

    • Например, в H 2 O степень окисления водорода равна +1, поскольку атом кислорода имеет заряд -2, и для общей нейтральности необходимы два заряда +1. Тем не менее, в составе гидрида натрия степень окисления водорода уже -1, так как ион Na несет заряд +1, и для общей электронейтральности заряд атома водорода (а тем самым и его степень окисления) должен равняться -1.
  5. Фтор всегда имеет степень окисления -1. Как уже было отмечено, степень окисления некоторых элементов (ионы металлов, атомы кислорода в перекисях и так далее) может меняться в зависимости от ряда факторов. Степень окисления фтора, однако, неизменно составляет -1. Это объясняется тем, что данный элемент имеет наибольшую электроотрицательность - иначе говоря, атомы фтора наименее охотно расстаются с собственными электронами и наиболее активно притягивают чужие электроны. Таким образом, их заряд остается неизменным.

  6. Сумма степеней окисления в соединении равна его заряду. Степени окисления всех атомов, входящих в химическое соединение, в сумме должны давать заряд этого соединения. Например, если соединение нейтрально, сумма степеней окисления всех его атомов должна равняться нулю; если соединение является многоатомным ионом с зарядом -1, сумма степеней окисления равна -1, и так далее.

    • Это хороший метод проверки - если сумма степеней окисления не равна общему заряду соединения, значит вы где-то ошиблись.

    Часть 2

    Определение степени окисления без использования законов химии
    1. Найдите атомы, не имеющие строгих правил относительно степени окисления. По отношению к некоторым элементам нет твердо установленных правил нахождения степени окисления. Если атом не подпадает ни под одно правило из перечисленных выше, и вы не знаете его заряда (например, атом входит в состав комплекса, и его заряд не указан), вы можете установить степень окисления такого атома методом исключения. Вначале определите заряд всех остальных атомов соединения, а затем из известного общего заряда соединения вычислите степень окисления данного атома.

      • Например, в соединении Na 2 SO 4 неизвестен заряд атома серы (S) - мы лишь знаем, что он не нулевой, поскольку сера находится не в элементарном состоянии. Это соединение служит хорошим примером для иллюстрации алгебраического метода определения степени окисления.
    2. Найдите степени окисления остальных элементов, входящих в соединение. С помощью описанных выше правил определите степени окисления остальных атомов соединения. Не забывайте об исключениях из правил в случае атомов O, H и так далее.

      • Для Na 2 SO 4 , пользуясь нашими правилами, мы находим, что заряд (а значит и степень окисления) иона Na равен +1, а для каждого из атомов кислорода он составляет -2.
    3. Найдите неизвестную степень окисления из заряда соединения. Теперь у вас есть все данные для простого расчета искомой степени окисления. Запишите уравнение, в левой части которого будет сумма числа, полученного на предыдущем шаге вычислений, и неизвестной степени окисления, а в правой - общий заряд соединения. Иными словами, (Сумма известных степеней окисления) + (искомая степень окисления) = (заряд соединения).

      • В нашем случае Na 2 SO 4 решение выглядит следующим образом:
        • (Сумма известных степеней окисления) + (искомая степень окисления) = (заряд соединения)
        • -6 + S = 0
        • S = 0 + 6
        • S = 6. В Na 2 SO 4 сера имеет степень окисления 6 .
    • В соединениях сумма всех степеней окисления должна равняться заряду. Например, если соединение представляет собой двухатомный ион, сумма степеней окисления атомов должна быть равна общему ионному заряду.
    • Очень полезно уметь пользоваться периодической таблицей Менделеева и знать, где в ней располагаются металлические и неметаллические элементы.
    • Степень окисления атомов в элементарном виде всегда равна нулю. Степень окисления единичного иона равна его заряду. Элементы группы 1A таблицы Менделеева, такие как водород, литий, натрий, в элементарном виде имеют степень окисления +1; степень окисления металлов группы 2A, таких как магний и кальций, в элементарном виде равна +2. Кислород и водород, в зависимости от вида химической связи, могут иметь 2 различных значения степени окисления.

Как определить степень окисления? Таблица Менделеева позволяет записывать данную количественную величину для любого химического элемента.

Определение

Для начала попробуем понять, что представляет собой данный термин. Степень окисления по таблице Менделеева представляет собой количество электронов, которые приняты либо отданы элементом в процессе химического взаимодействия. Она может принимать отрицательное и положительное значение.

Связь с таблицей

Как определяется степень окисления? Таблица Менделеева состоит из восьми групп, расположенных вертикально. В каждой из них есть две подгруппы: главная и побочная. Для того чтобы установить показатели для элементов, необходимо использовать определенные правила.

Инструкция

Как рассчитать степени окисления элементов? Таблица позволяет в полной мере справиться с подобной проблемой. Щелочные металлы, которые располагаются в первой группе (главной подгруппе), степень окисления проявляют в соединениях, она соответствует +, равна их высшей валентности. У металлов второй группы (подгруппы А) +2 степень окисления.

Таблица позволяет определить данную величину не только у элементов, проявляющих металлические свойства, но и у неметаллов. Их максимальная величина будет соответствовать высшей валентности. Например, для серы она составит +6, для азота +5. Как вычисляется у них минимальная (низшая) цифра? Таблица отвечает и на этот вопрос. Необходимо вычесть номер группы из восьми. Например, у кислорода она составит -2, у азота -3.

Для простых веществ, которые не вступали в химическое взаимодействие с другими веществами, определяемый показатель считается равным нулю.

Попробуем выявить основные действия, касающиеся расстановки в бинарных соединениях. Как поставить в них степень окисления? Таблица Менделеева помогает решить проблему.

Для примера возьмем оксид кальция СаО. Для кальция, расположенного в главной подгруппе второй группы, величина будет являться постоянной, равной +2. У кислорода, имеющего неметаллические свойства, данный показатель будет являться отрицательной величиной, и он соответствует -2. Для того чтобы проверить правильность определения, суммируем полученные цифры. В итоге мы получим ноль, следовательно, вычисления верны.

Определим подобные показатели еще в одном бинарном соединении CuO. Так как медь располагается в побочной подгруппе (первой группе), следовательно, изучаемый показатель может проявлять разные значения. Поэтому для его определения необходимо сначала выявить показатель для кислорода.

У неметалла, располагающегося в конце бинарной формулы, степень окисления имеет отрицательное значение. Так как этот элемент располагается в шестой группе, при вычитании из восьми шести получаем, что степень окисления у кислорода соответствует -2. Так как в соединении отсутствуют индексы, следовательно, показатель степени окисления у меди будет положительным, равным +2.

Как еще используется химическая таблица? Степени окисления элементов в формулах, состоящих из трех элементов, также вычисляются по определенному алгоритму. Сначала расставляют эти показатели у первого и последнего элемента. Для первого этот показатель будет иметь положительное значение, соответствовать валентности. У крайнего элемента, в качестве которого выступает неметалл, данный показатель имеет отрицательное значение, он определяется в виде разности (от восьми отнимают номер группы). При вычислении степени окисления у центрального элемента используют математическое уравнение. При расчетах учитывают индексы, имеющиеся у каждого элемента. Сумма всех степеней окисления должна быть равна нулю.

Пример определения в серной кислоте

Формула данного соединения имеет вид H 2 SO 4 . У водорода степень окисления составит +1, у кислорода она равна -2. Для определения степени окисления у серы, составим математическое уравнение: + 1 * 2 + Х + 4 * (-2) = 0. Получаем, что степень окисления у серы соответствует +6.

Заключение

При использовании правил можно расставлять коэффициенты в окислительно-восстановительных реакциях. Данный вопрос рассматривается в курсе химии девятого класса школьной программы. Кроме того, информация о степенях окисления позволяет выполнять задания ОГЭ и ЕГЭ.

Формальный заряд атома в соединениях — вспомогательная величина, обычно ее используют в описаниях свойств элементов в химии. Этот условный электрический заряд и есть степень окисления. Его значение изменяется в результате многих химических процессов. Хотя заряд является формальным, он ярко характеризует свойства и поведение атомов в окислительно-восстановительных реакциях (ОВР).

Окисление и восстановление

В прошлом химики использовали термин «окисление», чтобы описать взаимодействие кислорода с другими элементами. Название реакций произошло от латинского наименования кислорода - Oxygenium. Позже выяснилось, что другие элементы тоже окисляют. В этом случае они восстанавливаются — присоединяют электроны. Каждый атом при образовании молекулы изменяет строение своей валентной электронной оболочки. В этом случае появляется формальный заряд, величина которого зависит от количества условно отданных или принятых электронов. Для характеристики этой величины ранее применяли английский химический термин "oxidation number", который в переводе означает «окислительное число». При его использовании исходят из допущения, что связывающие электроны в молекулах или ионах принадлежат атому, обладающему более высоким значением электроотрицательности (ЭО). Способность удерживать свои электроны и притягивать их от других атомов хорошо выражена у сильных неметаллов (галогенов, кислорода). Противоположными свойствами обладают сильные металлы (натрий, калий, литий, кальций, другие щелочные и щелочноземельные элементы).

Определение степени окисления

Степенью окисления называют заряд, который атом приобрел бы в том случае, если бы принимающие участие в образовании связи электроны полностью сместились к более электроотрицательному элементу. Есть вещества, не имеющие молекулярного строения (галогениды щелочных металлов и другие соединения). В этих случаях степень окисления совпадает с зарядом иона. Условный или реальный заряд показывает, какой процесс произошел до того, как атомы приобрели свое нынешнее состояние. Положительное значение степени окисления — это общее количество электронов, которые были удалены из атомов. Отрицательное значение степени окисления равно числу приобретенных электронов. По изменению состояния окисления химического элемента судят о том, что происходит с его атомами в ходе реакции (и наоборот). По цвету вещества определяют, какие произошли перемены в состоянии окисления. Соединения хрома, железа и ряда других элементов, в которых они проявляют разную валентность, окрашены неодинаково.

Отрицательное, нулевое и положительное значения степени окисления

Простые вещества образованы химическими элементами с одинаковым значением ЭО. В этом случае связывающие электроны принадлежат всем структурным частицам в равной степени. Следовательно, в простых веществах элементам несвойственно состояние окисления (Н 0 2 , О 0 2 , С 0). Когда атомы принимают электроны или общее облако смещается в их сторону, заряды принято писать со знаком "минус". Например, F -1 ,О -2 , С -4 . Отдавая электроны, атомы приобретают реальный или формальный положительный заряд. В оксиде OF 2 атом кислорода отдает по одному электрону двум атомам фтора и находится в состоянии окисления О +2 . Считают, что в молекуле или многоатомном ионе более электроотрицательные атомы получают все связывающие электроны.

Сера — элемент, проявляющий разные валентность и степени окисления

Химические элементы главных подгрупп зачастую проявляют низшую валентность равную VIII. Например, валентность серы в сероводороде и сульфидах металлов — II. Для элемента характерны промежуточные и высшая валентность в возбужденном состоянии, когда атом отдает один, два, четыре или все шесть электронов и проявляет соответственно валентности I, II, IV, VI. Такие же значения, только со знаком "минус" или "плюс", имеют степени окисления серы:

  • в сульфиде фтора отдает один электрон: -1;
  • в сероводороде низшее значение: -2;
  • в диоксиде промежуточное состояние: +4;
  • в триоксиде, серной кислоте и сульфатах: +6.

В своем высшем состоянии окисления сера только принимает электроны, в низшей степени — проявляет сильные восстановительные свойства. Атомы S +4 могут проявлять в соединениях функции восстановителей или окислителей в зависимости от условий.

Переход электронов в химических реакциях

При образовании кристалла поваренной соли натрий отдает электроны более электроотрицательному хлору. Степени окисления элементов совпадают с зарядами ионов: Na +1 Cl -1 . Для молекул, созданных путем обобществления и смещения электронных пар к более электроотрицательному атому, применимы только представления о формальном заряде. Но можно предположить, что все соединения состоят из ионов. Тогда атомы, притягивая электроны, приобретают условный отрицательный заряд, а отдавая, — положительный. В реакциях указывают, какое число электронов смещается. Например, в молекуле диоксида углерода С +4 О - 2 2 указанный в верхнем правом углу индекс при химическом символе углерода отображает количество электронов, удаленных из атома. Для кислорода в этом веществе характерно состояние окисления -2. Соответствующий индекс при химическом знаке О — количество добавленных электронов в атоме.

Как подсчитать степени окисления

Подсчет количества отданных и присоединенных атомами электронов может отнять много времени. Облегчают эту задачу следующие правила:

  1. В простых веществах степени окисления равны нулю.
  2. Сумма окисления всех атомов или ионов в нейтральном веществе равна нулю.
  3. В сложном ионе сумма степеней окисления всех элементов должна соответствовать заряду всей частицы.
  4. Более электроотрицательный атом приобретает отрицательное состояние окисления, которое записывают со знаком "минус".
  5. Менее электроотрицательные элементы получают положительные степени окисления, их записывают со знаком "плюс".
  6. Кислород в основном проявляет степень окисления, равную -2.
  7. Для водорода характерное значение: +1, в гидридах металлов встречается: Н-1.
  8. Фтор — наиболее электроотрицательный из всех элементов, его состояние окисления всегда равно -4.
  9. Для большинства металлов окислительные числа и валентности совпадают.

Степень окисления и валентность

Большинство соединений образуются в результате окислительно-восстановительных процессов. Переход или смещение электронов от одних элементов к другим приводит к изменению их состояния окисления и валентности. Зачастую эти величины совпадают. В качестве синонима к термину «степень окисления» можно использовать словосочетание «электрохимическая валентность». Но есть исключения, например, в ионе аммония азот четырехвалентен. Одновременно атом этого элемента находится в состоянии окисления -3. В органических веществах углерод всегда четырехвалентен, но состояния окисления атома С в метане СН 4 , муравьином спирте СН 3 ОН и кислоте НСООН имеют другие значения: -4, -2 и +2.

Окислительно-восстановительные реакции

К окислительно-восстановительным относятся многие важнейшие процессы в промышленности, технике, живой и неживой природе: горение, коррозия, брожение, внутриклеточное дыхание, фотосинтез и другие явления.

При составлении уравнений ОВР подбирают коэффициенты, используя метод электронного баланса, в котором оперируют следующими категориями:

  • степени окисления;
  • восстановитель отдает электроны и окисляется;
  • окислитель принимает электроны и восстанавливается;
  • число отданных электронов должно быть равно числу присоединенных.

Приобретение электронов атомом приводит к понижению его степени окисления (восстановлению). Утрата атомом одного или нескольких электронов сопровождается повышением окислительного числа элемента в результате реакций. Для ОВР, протекающих между ионами сильных электролитов в водных растворах, чаще используют не электронный баланс, а метод полуреакций.