Что такое генофонд популяции? Понятие и определение. Изменения генофонда популяций — Гипермаркет знаний Что такое генофонд популяции в биологии определение

Основная цель популяционно-генетических исследований - изучение ведущих факторов микроэволюционного процесса, статики и динамики генетического состава популяций. В качестве единицы эволюции выступает популяция, представляющая минимальную по численности генетическую систему, в которой под действием отбора происходит взаимодействие генов и генных комплексов, обеспечивающее динамическое равновесие популяционной системы. В связи с этим Ф. Добжанский определил понятие микроэволюции как «изменение генотипического состава популяций» (Dobzhansky, 1951, с. 16).

Популяция является точкой приложения внешних факторов на биологические системы. В самом общем виде популяция, как структурная единица определенного уровня организации жизни, представляет собой самовоспроизводящуюся систему, обеспечивающую развитие и преемственность всего живого. С генетических позиций популяция - это «эколого-генетическая» общность, которая является естественноисторически сложившейся и естественно-исторически эволюционирующей системой (Глотов, 1983а, б, 1988). Эта системная организация делает популяцию, в отличие от особей, практически бессмертной за счет присущего ей системного, или популяционного, гомеостаза.

Популяция является не только единицей эволюции и биоценоза, но и объектом хозяйственной деятельности, использование природных ресурсов может быть эффективным только в случае соблюдения основных законов, определяющих жизнь популяционной системы. В условиях резких отклонений среды от нормы и при антропогенных воздействиях на популяций их генетическая структура подвергается изменениям, которые во многих случаях могут приводить к их разрушению. Изучение генетической структуры популяции и ее динамики должно иметь в связи с этим принципиальное значение для разработки биологически обоснованной системы охраны генофонда популяций рыб.

Понятие «генофонд популяции» органически связано с генетической сущностью понятия популяции. Формально представляя собой «совокупность генов всех особей в популяции» (Четвериков, 1926), генофонд при популяционных исследованиях воплощается в частоты генов, точнее – аллелей как формы существования генов. Однако определение частот аллелей является лишь способом изучения поведения генотипа особи как целостной интегрированной системы, только в некоторых случаях разложимой на отдельные гены (Яблоков, 1987). Такому мнению соответствует более позднее определение генофонда как «совокупности генотипов всех особей популяции» (Ayala, 1976). По существу, понятие генофонда популяции в большей степени связано с реализацией генетической информации в конкретной экологической и генотипической среде, чем с ее структурой, представленной последовательностью нуклеотидов в ДНК.

Каждая популяция обладает определенным запасом генетической изменчивости, который создается за счет возникновения мутаций и путем рекомбинаций. Впервые понятие генетической гетерогенности популяций было сформулировано С.С. Четвериковым (1926), который предсказал, что природные популяции любого вида генетически гетерогенны практически по любым признакам, т. е. в них по множеству локусов присутствуют два или более аллелей. С понятием генетической гетерогенности тесно связано понятие внутрипопуляционного генетического полиморфизма, определяемое как длительное сосуществование в популяции «двух или более хорошо обозначенных форм», причем наличие самой редкой из них не объясняется давлением мутационного процесса (Ford, 1940, с. 498). Н.В. Глотов (1983а, с. 3) рассматривает полиморфизм как «частный случай генетической гетерогенности, особый случай динамически устойчивой системы, контролируемой отдельными генами или блоками генов». Генетическая гетерогенность представляет собой «мобилизационный резерв» вида (Четвериков, 1926; Шмальгаузен, 1940; Гершензон, 1941; Майр, 1968), используя который популяции приспосабливаются к условиям существования при критических изменениях направления отбора. В последние годы появились факты, позволяющие считать, что чем разнообразнее состав популяций, тем полнее используется среда обитания и выше их численность, больше устойчивость к неблагоприятным воздействиям (Levins, 1968; Ayala, 1976; Valentine, 1976; Айала, 1981 и др.). 1981 и др.).

Отражая современные представления учения о популяции, эти определения соответствуют реальным методическим возможностям исследования генотипического состава популяций. Они имеют непосредственное отношение к выбору методологических подходов для эффективного изучения генофонда популяций различных животных, в том числе и рыб. Необходимость сохранять «все многообразие элементарных наследственНЫХ признаков», составляющих генофонд (Тимофеев-Ресовский и др., 1973), определяет и разнообразие генетических методов, используемых при изучении признаков разной природы - моногенных (качественных) и полигенных (количественных).

Показателем генетического состава всей популяции является генофонд. Генофонд - сумма всех генотипов, представленных в популяции. Так как подсчитать все имеющиеся в популяции гены и все аллели практически невозможно, о составе генофонда судят по соотношению частот аллелей отдельных генов.Генофонд популяции постоянно меняется под влиянием разных факторов. Во-первых , это связано с изменчивостью генотипов. Во-вторых, генофонд может изменяться под действием отбора; такие изменения генофонда имеют направленный характер.


19. Биологические факторы динамики генофонда популяций.

Численность и плотность – основные параметры популяции.

Численность – общее количество особей на данной территории или в данном объеме.

Плотность – количество особей или их биомасса на единице площади или объема. В природе происходит постоянные колебания численности и плотности.

Динамика численности и плотности определяется в основном рождаемостью, смертностью (биологические факторы) и процессами миграции(социально-демографические факторы). Это показатели, характеризующие изменение популяции в течение определенного периода: месяца, сезона, года и т.д. Изучение этих процессов и причин их обусловливающих очень важно для прогнозов состояния популяций.

Популяционные волны (волны жизни) еще в сравнительно недавнем прошлом играли заметную роль в развитии человечества. Темп прироста населения изменялся неравномерно. Увеличение темпов прироста численности совпадает с достижениями человечества - развитием земледелия, индустриализацией. Наблюдается неравномерное распределение людей на планете.

Генофонд популяции – совокупность генотипов всех особей, составляющих одну популяцию, включающая все разнообразие генов этой популяции. Сумма генофондов популяций составляет генофонд вида. Межпопуляционные различия (своеобразие генофонда каждой из популяций) определяются не только набором и частотами аллелями генов, составляющих генотипы особей, но и особенностями межгенных взаимодействий, обусловленными сочетанием этих аллелей в генотипах. Новые аллели в популяции появляются за счет мутаций и т.к. большинство вновь возникших аллелей рецессивны, они не проявляются в фенотипе, но сохраняются в гетерозиготном состоянии в чреде поколений, внося вклад в создание генетического разнообразия популяции. Уровень гетерозиготности варьирует в очень широких пределах.

Рецессивные мутации не единственный источник формирования разнообразия генофонда. Важную роль играет комбинативная изменчивость. При половом размножении случайное комбинирование гамет и кроссинговер обеспечивают уникальность комбинации аллелей, составляющих генотип каждой особи.

Таким образом, среди организмов, размножающихся половым путем, нет двух особей, обладающих идентичными генотипами. Исключением считались однояйцевые близнецы, но и они генетически не вполне идентичны.

Существует ряд характеристик популяционного генофонда: правило Харди-Вайнберга, дрейф генов, миграция и системы скрещивания.

Правило Харди – Вайнберга.

Одной из характеристик популяционного генофонда, позволяющих сравнивать генофонды популяций одного вида, может служить анализ изменения концентрации аллелей того или иного вида.

Правило Харди – Вайнберга гласит: в большой панмиктической популяции, при отсутствии возмущающихся воздействий, как то повторное мутирование данного гена, отбор или избирательная миграция концентрация аллелей из поколения в поколение остается неизмннной.

Простейшей системой скрещивания является панмиксия (отсюда название популяции), при которой равновероятно скрещиваются любые две особи данной популяции.

Отклонение от правила Харди – Вайнберга с видетельствует о том, что на популяцию действует какой – либо из внешних факторов или их совокупность (например, в результате эмиграции или иммиграции особей популяции обмениваются аллелями с другими популяциями того же вида, или произошло мутирование того же гена, или по признаку, в формировании которого принимает участие данный ген, идет отбор).

Из правила следует два важных положения:

Концентрация данного аллеля может меняться только под действием внешних по отношению к популяции факторов, влияющих на ее численность и состав

В популяции будут накапливаться разные аллели – разнообразие аллелей по мере мутирования будет возрастать.

Это генетическое разнообразие является характеристикой генофонда и имеет огромное значение для эволюции, т.к. представляет собой материал для отбора.

Частоты аллелей меняются только под действием сил внешних по отношению к генофонду популяции. Исключением является только дрейф генов – стохастическое изменение концентрации аллелей, обусловленные случайностью скрещиваний в ограниченной по численности популяции.


Генофонд популяции-совокупность генотипов всех особей, составляющих популяцию, включающая все разнообразие генов этой популяции. Сумма генофондов популяций составляет генофонд вида. Межпопуляционные различия (своеобразие генофонда каждой из популяций) определяются не только набором и частотами аллелей генов, составляющих генотипы особей, но и особенностями межгенных взаимодействий, обусловленными сочетанием этих аллелей в генотипах. Новые аллели появляются в генотипах за счет мутаций. Поскольку большинство вновь возникших аллелей рецессивны, они не проявляются в фенотипе, но сохраняются в гетерозиготном состоянии в чреде поколений, внося вклад в создание генетического разнообразия популяции. Основатель популяционной генетики С. С. Четвериков (1926) писал, что «популяция впитывает мутации, как губка впитывает воду». На рис. 3
о, Бес озвоночные
? I Позвоночные
г-Г О
E I Самоопыляющиеся растения ” Перекрестно опыл. растения

Рис.З. Средняя гетерозиготность в генофондах разных таксонов (из Инге-Вечтомова, 1989)

приведены обобщенные данные по уровням гетерозиготности в разных таксонах многоклеточных. Из них следует, что уровень гетерозиготности варьирует в очень широких пределах.
Рецессивные мутации не единственный источник формирования разнообразия генофонда. Как уже сказано, не менее важную роль играет комби- нативная изменчивость. При половом размножении случайное комбинирование гамет и кроссинговер обеспечивают уникальность комбинации аллелей, составляющих генотип каждой особи.
Таким образом, среди организмов, размножающихся половым путем, нет двух особей, обладающих идентичными генотипами. Исключением из этого правила до последнего времени считались однояйцевые (монозиготные) близнецы. Однако, показано, что и они генетически не вполне идентичны.
Правило Харди-Вайнберга
Одной из характеристик популяционного генофонда, позволяющих сравнивать генофонды популяций одного вида, может служить анализ изменения концентрации аллелей того или иного гена. Для того, чтобы понять при каких условиях концентрация аллелей будет изменяться, рассмотрим модель «идеальной» популяции, которую создали английский математик Харди и немецкий врач Вайнберг. Они независимо друг от друга вывели в 1908 г. уравнение, описывающее динамику двух аллелей в менделевской панмиктической популяции. Менделевской называется популяция организмов, с наследованием признаков, подчиняющемся законам Менделя, а панмиктической - популяция, в которой равновероятно скрещивание любых двух особей разных полов.
Правило (закон) Харди-Вайнберга иногда сравнивают с первым законом Ньютона. Подобно тому, как первый закон механики гласит, что «физическое тело сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока внешние силы не изменят это состояние», закон Харди-Вайнберга гласит, что «в большой панмиктической популяции, при отсутствии возмущающих воздействий, как то: повторное мутирование данного гена, отбор или избирательная миграция (т. е. при отсутствии привнесения или убыли аллеля) концентрация аллелей из поколения в поколение остается неизменной».
В простейшем случае правило Харди-Вайнберга для двух аллелей можно проиллюстрировать решеткой Пеннета (рис. 4). Частоты аллелейр - доминантного и q - рецессивного 0,49 + 0,42 + 0,09 = 1 в буквенном выражении p2 + 2pq + q2=l.
Аналогичная ситуация наблюдается для любого числа аллелей. Частоты аллелей групп крови (ABO) у людей описывает уравнение:
p2+2pr+2qr+2pq+r2+q2 = 1.

AA
P2=O,49
Aa
pq-0,21
,-- - .
Aa aa
PQ=0,21 q~ 0,09

Гаметы самки
А а
р=0,7 q = 0,3

§ А
I P=O,7 о
Z
lt;в
Z
п
1_
а
q=0,3
В следующем поколении, при соблюдении перечисленных условий, частоты генов и генотипов не изменяются. P1-концентрация аллеля А в следующем поколении, равна P1 = p2+pq=p(p+q). Так как p+q=l, P1=P, Q1 = q.
На практике мы рассматриваем не объединение гамет, а случайное скрещивание особей. Самки и самцы могут быть гомозиготными и гетерозиготными по любому из двух аллелей. Обозначим частоты генотипов AA как х, Aa-у и аа - г. Поскольку x+y+z= I ир + #=1, тогда #+0,5i/=p nz+0,5y=q. Так как вероятность одновременного осуществления двух независимых событий равна произведению их вероятностей, получим частоты различных типов скрещиваний, представленных в таблице 2.
Таблица 2
Соотношение частот генотипов в потомстве при скрещивании особей, обладающих двумя аллеями

Тип

Частота


Потомки


скрещиваний

скрещиваний

AA

Aa

aa

?AAxCf AA

Х2

Х2



9 AA х Cf Aa

XY

0,5XY

0,5XY


9 AAxCf аа

XZ


XZ


Aa х Cf AA

XY

0,5XY

0,5XY


9 Aa х Cf Aa

Y2

0,25Y2

0,5Y2

0,25Y2

9 AaxCf аа

YZ


0.5YZ

0,5 YZ

9 aaxCf AA

XZ


XZ


9 aaxCf Aa

YZ



0,5YZ

9 aaxCf аа
/>Z2


Z2

Предполагая объединение гамет при этих скрещиваниях случайным, получим приведенное в табл. 3 распределение частот генотипов следуюгце- го поколения.
Таблица 3
Частоты типов скрещивания в панмиктической популяции




Самцы


Самки

AA

Aa

аа


X

У

Z

AA

AAxAA

AAxAa

AAxaa

X

X2

XY

XZ

Aa

AaxAA

AaxAa

Aaxaa

Y

XY

Y2

YZ

аа

AaxAA

AaxAa

Aaxaa

Z

XZ

YZ

Z2

Чтобы выяснить частоты генотипов в следующем поколении, просуммируем частоты потомков от различных типов скрещивания.
Для гетерозиготы Aa:
О, Ъху+xz + О, Ъху+О, Ьу2 4- 0,5 yz 4- xz + О, Ъуг =
=ху + 2 xz+yz + 0,5y2 = 2x (0,5 у + z)+y (0,5у + z)=
= 2(x + 0,5y)(z + 0,5y)=2pq,
(поскольку х+0,5у=р, a z + 0,5y = q).
Так же для AA получим р2 и для аа - q2. И в этом случае выдерживается неизменность уравнения Харди-Вайнберга. Подставив вместо х, у яг значения р2, 2pq и q2, можно убедиться, что концентрации генотипов остаются неизменными в каждом последующем поколении. Изменив концентрацию одного из аллелей, можно также убедиться, что новое равновесие установится в следующем поколении и в дальнейшем не изменится. Полученный результат сохраняется для случаев множественного аллелизма, множества несцепленных локусов, различий в концентрации аллелей у разных полов. В последнем случае, т. е. в случае сцепленности с полом, или в случае сце- пленности аутосомных генов, равновесие Харди-Вайнберга устанавливается не за одно, а за несколько поколений.
Отклонение от правила Харди-Вайнберга свидетельствует о том, что на популяцию действует какой-либо из внешних факторов или их совокупность. Например, в результате эмиграции или иммиграции особей популяции обмениваются аллелями с другими популяциями того же вида, или произошло повторное мутирование того же гена, или по признаку, в формировании которого принимает участие данный ген, идет отбор. Однако,
сохранение равновесия не всегда свидетельствует об отсутствии действия этих факторов. Например, при половом отборе частоты аллелей могут меняться от поколения к поколению, а частоты генотипов будут удовлетворять соотношению р2 + 2pq + q2=I.
Из правила Харди-Вайнберга следуют два важных положения: во-первых, концентрация данного аллеля может меняться только под действием внешних по отношению к популяции факторов, влияющих на ее численность и состав; во-вторых, в популяции будут накапливаться разные аллели-разнообразие аллелей по мере мутирования будет возрастать. Это генетическое разнообразие является характеристикой генофонда и имеет огромное значение для эволюции, так как представляет собой материал для отбора.
На практике при определении концентрации аллелей какого-либо гена в изучаемой популяции признается корректным использование уравнение Харди-Вайнберга в том случае, если популяция достаточно большая, скрещивание более-менее случайно, а интенсивность отбора низка.
Такие расчеты имеют практическое значение, так как разные значения равновесных концентраций аллелей в выборках указывают на то, что исследователь имеет дело более чем с одной популяцией. Различиями частот аллелей по результатам аллозимного анализа часто пользуются для того, чтобы различать популяции рыб. Это позволяет устанавливать нормы вылова не подрывающие численности популяции. Примером различий по частотам аллелей может служить своеобразие популяций кеты Oncorhynchus keta, нерестящихся в реках о. Сахалин и Японских островов (Алтухов, 1983) (рис. 5).
Как было сказано выше, частоты аллелей меняются только под действием сил (факторов) внешних по отношению к генофонду популяции. Исключение составляет только дрейф генов - стохастические изменения концентрации аллелей, обусловленные случайностью скрещиваний в ограниченной по численности популяции.
Дрейф генов
Стохастические изменения концентрации аллелей в популяциях с малой численностью были открыты Ромашовым и Дубининым (1931) и названы ими генетико-автоматическими процессами. Независимо от этих авторов то же явление было открыто Райтом (1931) и названо им дрейфом генов. В мировой литературе закрепился этот более образный и короткий термин.
Явление дрейфа генов более заметно в популяциях, с ограниченной численностью репродуктивной части составляющих их особей. Численность репродуктивной части популяции, то есть число особей, достигших половой зрелости и оставивших потомство, обычно во много раз меньше общей (включающей неполовозрелых особей) численности. Например, у водяной полевки Arvicola terrestris L. в каждом помете в среднем бывает
около 7 детенышей (от 3 до 14). За сезон полевка приносит 3-4 выводка. Детеныши, родившиеся весной, к осени приступают к размножению и успевают принести по выводку. Таким образом, потомство одной пары родителей составляет за сезон порядка 50 особей, считая внуков. Считая численность популяции постоянной, что справедливо при усреднении колебаний численности по времени, можно утверждать, что 48 зверьков из этих 50 потомков не доживают до половой зрелости.

Реки, объемы суммарных выборок, годы исследований: Найба, 992 (1976-1981) Ударница, 256 (1977-1979, 1981) Калининка, 1783 (1977, 1978, 1980, 1981) Заветинка, 385 (1980) Ясноморка, 294 (1980) Буюклинка (Поронай), 86 (1976) Курилка, 311 (1977-1980) Анюй, 196 (1977, 1978) Шари 101 (1976)
10-Куширо, 89 (1976)
11 - Читозе, 98 0ирасе, 50 Цугаруиши, 90 0ригаса, 81 Отсугучи, 81 Катагиси, 91 Окава, 53 (1977) Укедо, 200 (1976, 1977) Ушитавари, 100 (1976, 1977) Такибучи, 50 (1977) Шо, 85 (1977)

Рис. 5. Частоты аллелей цитоплазматической изоцитратдегидрогеназы в нерестовых популяциях кеты Oncorhynchus keta. Секторы кружков соответствуют частотам аллелей ldh-A2F и ldh-A2S. Данные Лаборатории популяционной генетики ИОГен АН СССР и (Kijima, Fujio1 1979)(из Алтухова, 1983)

При малой численности репродуктивной части популяции случайное скрещивание может ускорить процесс распространения какого-либо аллеля в популяции и(или) исчезновению того или иного аллеля из генофонда, например, в случае неразмножения особи-носителя этого гена.
Механизм дрейфа генов обычно иллюстрируют с помощью прибора Гальтона (рис. 6). Шарик на этом рисунке изображает аллель. Каждый гвоздь, о который шарик ударяется, скатываясь по наклонной доске, - скрещивание особи, несущей данный аллель. Шарик может докатиться до низа доски и остаться в популяции, но может и выкатиться в левый желоб - исчезнуть из генофонда, несмотря на то, что его концентрация в начале пути была? = 0,5 но может и выкатиться в правый желоб, достигнув концентрации q = 1,0.
Существуют, однако, две группы вопросов, при решении которых нельзя обойтись без учета эффекта дрейфа генов. Первая - распределение частот генов в системе малых популяций - имеет значение для исследования популяционной структуры. Вторая - исследование судьбы отдельной мутации - важна для понимания взаимодействия отбора и дрейфа генов при формировании изменчивости, служащей материалом эволюции. Следуя Фишеру (1930), ограничимся рассмотрением судьбы селективно-нейтральной мутации.
Предположим, что в популяции, целиком состоящей из генотипов AA, возникла мутация а. Это означает, что возникла одна особь с генотипом Aa. Если у такой особи будет один потомок, то с вероятностью 0,5 он будет либо AA, либо Aa. Следовательно, вероятность потери аллеля а равна в этом случае 0,5. При наличии двух потомков она будет 0,25, а при наличии К потомков Lk=0,5*. Если число потомков в семьях, составляющих данную популяцию, подчиняется распределению Пуассона, а численность популяции постоянна, частота семей с К потомками равна
_2 2К
рк=е п
к Kl
и вероятность потери аллеля в первом поколении составляет
L = V pKLK =Z_2|l+l+-I=T2*/=/-1 =0,368
Ч к I 2! 3! к\ I

Фишер рассчитал вероятности утраты аллеля для 127 поколений в случае полной нейтральности этого аллеля и в случае, когда он обладает I % -ным селективным преимуществом (табл. 4). Как видно из таблицы, даже некоторое селективное преимущество не гарантирует мутантный аллель от элиминации. Вероятность его утраты очень высока-0,98. Отбор, таким образом, не гарантирует сохранения каждого данного полезного организму индивидуального уклонения, а лишь увеличивает вероятность его закрепления в популяции. При учете повторного мутирования, возвратных мутаций и (или) непуассоновского распределения числа потомков в семьях, судьба единичного аллеля остается неизменной.
Эксперименты, в которых дрейф генов не зависел от воли экспериментатора, свидетельствуют о том, что для популяций, репродуктивная величина которых превышает 100 особей, этим процессом можно пренебречь. Численность естественных популяций, как правило, больше IO. Лишь у вымирающих видов или видов, искусственно поддерживаемых в ботани-
Таблица4
Вероятность потери (I) единичного мутантного гена (по Фишеру, 1930; из Ли, 1978)


Поколение п

Без селективного преимущества

При преимуществе в I %

Вероятность
потери
In

Вероятность
сохранения
I-In

Вероятность
потери
In

Вероятность
сохранения
I-In

I

0,3679

0,6231

0,3542

0,6358

2

0,5315

0,4685

0,5262

0,4738

3

0,6259

0,3741

0,6197

0,3803

4

0,6879

0,3121

0,6811

0,3189

5

0,7319

0,2681

0,7246

0,2754

6

0,7649

0,2351

0,7572

0,2428

7

0,7905

0,2095

0,7825

0,2175

...

15

0,8873

0,1127

0,8783

0,1217

31

0,9411

0,0589

0,9313

0,0687

63

0,9698

0,0302

0,9592

0,0409

127

0,9847

0,0153

0,9729

0,0271

...

OO

1,000

0,000

0,9803

0,0197
/>
ческих садах, зоопарках и т. п., численность размножающихся особей меньше, и, следовательно, дрейф может иметь существенное значение, которое надо учитывать при их сохранении. На рис. 7 изображены траектории изменения концентраций аллеля дикого типа в процессе конкуренции особей дикого типа и особей с мутацией «Ыаск» у мучного хруща при численности популяций в 10 и в 100 особей. В обоих случаях концентрация аллеля дикого типа, возрастала, но при низкой численности размножающихся жуков (N = 10) в одном случае аллель дикого типа был утрачен. В остальных случаях колебания частот аллеля дикого типа были существенно сильнее, чем при численности N= 100. Этот пример иллюстрирует значение величины репродуктивной части популяции для проявления эффекта дрейфа генов.
Другим фактором, ограничивающим эффективность дрейфа генов, является, по-видимому, полигенность признаков фенотипа. Чем больше генов определяют тот или иной признак, тем меньше изменчивость фенотипов будет зависеть от отклонения частот аллелей, входящих в определяющие эти признаки пул генов. Во всяком случае, в ограниченных по численности популяциях млекопитающих не проявлялись эффекты дрейфа. Примерами могут служить азиатский лев, популяция которого на северо-западе Индии не превышает 100 особей и изолирована уже много веков, или лошадь Пржевальского, численность которой в 20-х годах XX в.


CO
С
0
I-
2
5
О?
S
1

CO
3-

0 5 10 15 20

Поколение

Рис. 7. Взаимодействие отбора и дрейфа генов при конкуренции жуков дикого типа и мутантных (Ыаск) у мучного хруща Tribolium castaneum. В эксперименте использованы 12 популяций с численностью N=10 размножающихся особей и 12 популяций с численностью N=100 размножающихся особей. Видно, что при N=IO концентрация дикого аллеля в одном случае упала до нуля и в семи случаях достигла ста процентов При N=100 дрейф был неэффективен, (из Фольконера, 1985).

Популяция - совокупность особей одного вида, занимающих определенный ареал, свободно скрещивающихся друг с другом, имеющих общее происхождение, генетическую основу и в той или иной степени изолированных от других популяций данного вида.

Основные характеристики популяций:

1) численность – общее количество особей на выделяемой территории;

2) плотность популяции – среднее число особей на единицу площади или объема занимаемого популяцией пространства; плотность популяции можно выражать также через массу членов популяции в единице пространства;

3) рождаемость – число новых особей, появившихся за единицу времени в результате размножения;

4) смертность – показатель, отражающий количество погибших в популяции особей за определенный отрезок времени;

5) прирост популяции – разница между рождаемостью и смертностью; прирост может быть как положительным, так и отрицательным;

6) темп роста – средний прирост за единицу времени.

Генофонд - понятие из популяционной генетики, описывающее совокупность всех генных вариаций (аллелей) определённой популяции. Популяция располагает всеми своими аллелями для оптимального приспособления к окружающей среде. Можно также говорить о едином генофонде вида, так как между разными популяциями вида происходит обмен генами.

Если во всей популяции существует лишь один аллель определённого гена, то популяция по отношению к вариантам этого гена называется мономорфной. При наличии нескольких разных вариантов гена в популяции она считается полиморфной.

Понятие о факторах эволюции .

1. НАСЛЕДСТВЕННОСТЬ - свойство организмов повторять в ряду поколений сходные типы обмена в-в и индивид. развития в целом. Обеспечивается самовоспроизведением материальных единиц Н. - генов, локализованных в специфич. структурах ядра клетки (хромосомах) и цитоплазмы. Вместе с изменчивостью Н.
обеспечивает постоянство и многообразие форм жизни и лежит в основе эволюции живой природы.
2. ИЗМЕНЧИВОСТЬ - разнообразие признаков и свойств у особей и групп особей любой степени родства. Присуща всем живым организмам. Различают Изменчивость: наследств. и ненаследств. ; индивидуальную и групповую, качеств. и количеств., направленную и ненаправленную. Наследств. изменчивость обусловлена возникновением мутаций, ненаследств. - воздействием факторов внеш. среды. Явления наследственности и изменчивости лежат в основе эволюции.
3. БОРЬБА ЗА СУЩЕСТВОВАНИЕ - одно из осн. понятий в теории эволюции Ч. Дарвина, которое он употреблял для обозначения отношений между организмами, а также между организмами и абиотич. условиями, приводящих к гибели менее приспособленных и выживанию наиболее приспособленных особей, т.е. к естеств. отбору. Сложность проблемы и метафорич. характер термина породили его различ. толкования и даже исключение этого понятия из эволюц. биологии нек-рыми совр. дарвинистами. Делались попытки учение о борьбе за сущ. переносить на человеческое об-во (социальный дарвинизм) .
4. ЕСТЕСТВЕННЫЙ ОТБОР - процесс выживания и воспроизведения организмов, наиб. приспособленных к условиям среды, и гибели в ходе эволюции неприспособленных. Е. О. - следствие борьбы за существование; обусловливает, относит. целесообразность строения и функций организмов; творч. роль Е. О. выражается в преобразовании популяций, приводящем к появлению новых видов. Е. О. как осн. движущий фактор ист. развития живой природы открыт Ч. Дарвином.
5. ПРИСПОСОБЛЕННОСТЬ (адаптация, целесообразность) ее столько много (строение тела, окраска, поведение, забота о потомстве и т.д.) , что практически изучить не возможно, до Дарвина эту проблему решали с позиции креацинизма, изначальна и неизменна.
6. ПОПУЛЯЦИОННЫЕ ВОЛНЫ (волны жизни) - периодические или непериодические колебания численности видов всех живых организмов, как правило, действует избирательно, случайно уничтожают особи, благодаря чему редкий генотип может сделаться обычным, и подхвачен Е. О.
7. ИЗОЛЯЦИЯ (от франц. isolation - отделение, разобщение) , возникновение барьеров (терр. - механич., экологич., поведение., физиол. - морфол., генетич.) , препятствующих свободному скрещиванию организмов; одна из причин разобщения и углубления различий между близкими формами и образования новых видов.
8. МУТАЦИИ (от лат. mutatio - изменение, перемена) , возникающие естественно или вызываемые искусственно изменения наследств. свойств организма в результате перестроек и нарушений в генетич. материале организма - хромосомах и генах. М. - основа наследств. изменчивости в живой природе.
МУТАЦИОННАЯ ТЕОРИЯ возникла в результате открытия мутаций - наследств. изменений признаков и
свойств организмов. Согласно М. т. резкие, внезапные мутации - решающий фактор эволюции, сразу ведущий к возникновению новых видов


9. ДРЕЙФ ГЕНОВ (дрейф-движение) - если численность резко идет на убыль (наводнение, пожар и т.д.) остается несколько особей (биолог. св-ва не имеют никаких значений) в дальнейшем эта популяция (пережив катастрофы) и определит генетич. структуру новой популяции, при этом некоторые бывшие мутации исчезнут, а другие мутации возникнут.
Наследственность и изменчивость, - разные свойства организмов, обусловливающие сходство и несходство потомства с родителями и с более отдаленными предками. Наследственность выражает устойчивость органических форм в ряду поколений, а изменчивость - их способность к преобразованию. Дивергенция (от ср. -век. лат. диверго - отклоняюсь) , расхождение признаков и свойств у первоначально близких групп организмов в ходе эволюции. Результат обитания в разных условиях и неодинаково направленного Е. О. Понятие дивергенция введено Дарвином для объяснения многообразия сортов культурных р-ний, пород домашних ж-ных и биолог. видов.

Фенотипическая изменчивость. Её закономерности и причины. Ненаследственная изменчивость связана с изменением фенотипа и не затрагивает генотип. Любое изменение фенотипа организма – результат взаимодействия генотипа с условиями внешней среды: Фенотипические изменения, вызываемые известными факторами внешней среды, называют модификациями. Модификационная изменчивость отличается следующими особенностями:

Массовым характером изменений, затрагивающих большинство особей в популяции;

Адекватностью изменений воздействиям среды;

Кратковременностью большинства модификаций;

Модификации не наследуются.

Предел модификационной изменчивости, обусловленный генотипом, называют нормой реакции. Изменений самого генотипа не возникает. Модификации не передаются следующему поколению и исчезают после того, как прекратилось действие фактора, вызывающего их. Факторы внешней среды (свет, температура, влажность) оказывают влияние на функцию генов и развитие организма Например, цветок примулы имеет в комнатных условиях (18-20°С) краснуюокраску цветов. Если увеличить влажность и повысить температуру до 30-35°С, то действие генов, отвечающих за окраску, подавляется и цветы будут белыми. Если растение вернуть в прежние нормальные условия (18-20°С), то примула будет иметь красные цветы. Семена, собранные от белых и красных растений, дадут потомство в зависимости от условий среды. Количество эритроцитов в 1 мм3 увеличивается почти вдвое у альпинистов, поднимающихся на высоту 4 тыс. метров, но когда они возвращаются в долину, число эритроцитов становится нормальным. Это связано с влиянием концентрации кислорода в воздухе, его дефицита в высокогорной местности.

Наследуется не признак, а тип биохимической реакции на условия внешней среды. Возникновение модификации связано с воздействием условий среды на ферментативные реакции, протекающие в организме.

Признаки формируются под действием условий среды. Признаки бывают пластичными и непластичными. Степень выраженности пластичных признаков зависит от внешней среды. Для них характерна широкая норма реакции. Это количественные признаки (масса тела, окраска цветов). Количественные признаки можно измерить и построить вариационный ряд. Методы вариационной статистики позволяют изучить особенности изменчивости частей тела, органов и т.д. Непластические признаки остаются практически неизменными при любых условиях среды. Они характеризуются узкой нормой реакции (например, групп крови, окраска глаз).

Большинство модификаций имеет приспособительное значение для адаптации организма к изменяющимся условиям среды. Многие модификации, особенно те, которые вызваны физическими или химическими факторами, например, мутагенами, резко изменяют фенотип особи, вызывая уродства. Такие модификации называют морфозами.

Возможны модификации, приводящие к появлению фенотипа, напоминающего то или иное аллельное состояние гена, т.е. возникают фенокопии. Возникающее под влиянием среды изменение генотипа как бы копирует тот фенотип, который определен генотипом. Например, катаракта в одних случаях вызвана специфическим геном, а в других - проявляется в результате действия на хрусталик каких-то факторов среды (действие ионизирующего излучения) - фенокопия.

Фенокопии по наследству не передаются.