Logaritmy se stejným. Logaritmické výrazy

hlavní vlastnosti.

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

identické důvody

Log6 4 + log6 9.

Nyní si úkol trochu zkomplikujeme.

Příklady řešení logaritmů

Co když základem nebo argumentem logaritmu je mocnina? Potom lze exponent tohoto stupně vyjmout ze znaménka logaritmu podle následujících pravidel:

Všechna tato pravidla mají samozřejmě smysl, pokud je dodržena ODZ logaritmu: a > 0, a ≠ 1, x >

Úkol. Najděte význam výrazu:

Přechod na nový základ

Nechť je uveden logaritmus logax. Pak pro libovolné číslo c takové, že c > 0 a c ≠ 1 platí rovnost:

Úkol. Najděte význam výrazu:

Viz také:


Základní vlastnosti logaritmu

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Exponent je 2,718281828…. Chcete-li si zapamatovat exponent, můžete si prostudovat pravidlo: exponent se rovná 2,7 a dvojnásobku roku narození Lva Nikolajeviče Tolstého.

Základní vlastnosti logaritmů

Znáte-li toto pravidlo, budete znát jak přesnou hodnotu exponentu, tak datum narození Lva Tolstého.


Příklady pro logaritmy

Logaritmické výrazy

Příklad 1
A). x=10ac^2 (a>0,c>0).

Pomocí vlastností 3.5 vypočítáme

2.

3.

4. Kde .



Příklad 2. Najděte x if


Příklad 3. Nechť je uvedena hodnota logaritmů

Vypočítejte log(x), pokud




Základní vlastnosti logaritmů

Logaritmy, stejně jako všechna čísla, lze sčítat, odečítat a transformovat všemi způsoby. Protože ale logaritmy nejsou úplně obyčejná čísla, existují zde pravidla, která se nazývají hlavní vlastnosti.

Tato pravidla rozhodně musíte znát – bez nich nelze vyřešit jediný vážný logaritmický problém. Navíc je jich velmi málo – vše se dá naučit za jeden den. Pojďme tedy začít.

Sčítání a odčítání logaritmů

Uvažujme dva logaritmy se stejnými základy: logax a logay. Poté je lze sčítat a odečítat a:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

Součet logaritmů se tedy rovná logaritmu součinu a rozdíl se rovná logaritmu kvocientu. Poznámka: zde je klíčový bod identické důvody. Pokud jsou důvody jiné, tato pravidla nefungují!

Tyto vzorce vám pomohou vypočítat logaritmický výraz, i když nejsou uvažovány jeho jednotlivé části (viz lekce „Co je to logaritmus“). Podívejte se na příklady a uvidíte:

Protože logaritmy mají stejné základy, použijeme součtový vzorec:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Úkol. Najděte hodnotu výrazu: log2 48 − log2 3.

Základy jsou stejné, použijeme rozdílový vzorec:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Úkol. Najděte hodnotu výrazu: log3 135 − log3 5.

Základy jsou opět stejné, takže máme:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Jak vidíte, původní výrazy jsou tvořeny „špatnými“ logaritmy, které nejsou počítány samostatně. Ale po transformacích se získají zcela normální čísla. Mnoho testů je založeno na této skutečnosti. Ano, na Jednotné státní zkoušce jsou se vší vážností (někdy prakticky beze změn) nabízeny výrazy podobné testu.

Extrahování exponentu z logaritmu

Je snadné vidět, že poslední pravidlo následuje první dvě. Ale stejně je lepší si to pamatovat - v některých případech to výrazně sníží množství výpočtů.

Všechna tato pravidla mají samozřejmě smysl, pokud je dodržena ODZ logaritmu: a > 0, a ≠ 1, x > 0. A ještě něco: naučte se aplikovat všechny vzorce nejen zleva doprava, ale i naopak , tj. Čísla před znaménkem logaritmu můžete zadat do samotného logaritmu. To je nejčastěji vyžadováno.

Úkol. Najděte hodnotu výrazu: log7 496.

Zbavme se stupně v argumentu pomocí prvního vzorce:
log7 496 = 6 log7 49 = 6 2 = 12

Úkol. Najděte význam výrazu:

Všimněte si, že jmenovatel obsahuje logaritmus, jehož základem a argumentem jsou přesné mocniny: 16 = 24; 49 = 72. Máme:

Myslím, že poslední příklad vyžaduje určité objasnění. Kam zmizely logaritmy? Do poslední chvíle pracujeme pouze se jmenovatelem.

Logaritmické vzorce. Logaritmické příklady řešení.

Předložili jsme základ a argument tam stojícího logaritmu ve formě mocnin a vyjmuli exponenty - dostali jsme „třípatrový“ zlomek.

Nyní se podívejme na hlavní zlomek. Čitatel i jmenovatel obsahují stejné číslo: log2 7. Protože log2 7 ≠ 0, můžeme zlomek zmenšit - 2/4 zůstanou ve jmenovateli. Podle pravidel aritmetiky lze čtyři převést do čitatele, což se také stalo. Výsledkem byla odpověď: 2.

Přechod na nový základ

Když mluvíme o pravidlech pro sčítání a odečítání logaritmů, konkrétně jsem zdůraznil, že pracují pouze se stejnými základy. Co když jsou důvody jiné? Co když to nejsou přesné mocniny stejného čísla?

Na pomoc přicházejí vzorce pro přechod na nový základ. Formulujme je ve formě věty:

Nechť je uveden logaritmus logax. Pak pro libovolné číslo c takové, že c > 0 a c ≠ 1 platí rovnost:

Konkrétně, pokud nastavíme c = x, dostaneme:

Z druhého vzorce vyplývá, že základ a argument logaritmu lze prohodit, ale v tomto případě je celý výraz „převrácen“, tzn. logaritmus se objeví ve jmenovateli.

Tyto vzorce se zřídka vyskytují v běžných číselných výrazech. Jejich výhodnost lze vyhodnotit pouze při řešení logaritmických rovnic a nerovnic.

Existují však problémy, které se nedají vyřešit vůbec jinak než přestěhováním do nové základny. Podívejme se na několik z nich:

Úkol. Najděte hodnotu výrazu: log5 16 log2 25.

Všimněte si, že argumenty obou logaritmů obsahují přesné mocniny. Vyjmeme ukazatele: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Nyní „obrátíme“ druhý logaritmus:

Vzhledem k tomu, že se součin při přeskupování faktorů nemění, v klidu jsme vynásobili čtyři a dvě a pak jsme se zabývali logaritmy.

Úkol. Najděte hodnotu výrazu: log9 100 lg 3.

Základem a argumentem prvního logaritmu jsou přesné mocniny. Pojďme si to zapsat a zbavit se indikátorů:

Nyní se zbavme desetinného logaritmu přechodem na nový základ:

Základní logaritmická identita

Často je v procesu řešení nutné reprezentovat číslo jako logaritmus k danému základu. V tomto případě nám pomohou následující vzorce:

V prvním případě se číslo n stane exponentem v argumentu. Číslo n může být naprosto cokoliv, protože je to pouze logaritmická hodnota.

Druhý vzorec je vlastně parafrázovaná definice. Tak se tomu říká: .

Co se vlastně stane, když číslo b umocníme takovou mocninu, že číslo b této mocnině dá číslo a? Správně: výsledkem je stejné číslo a. Přečtěte si tento odstavec ještě jednou pozorně – mnoho lidí se na něm zasekne.

Stejně jako vzorce pro přesun na novou základnu je základní logaritmická identita někdy jediným možným řešením.

Úkol. Najděte význam výrazu:

Všimněte si, že log25 64 = log5 8 - jednoduše vzal druhou mocninu ze základu a argumentu logaritmu. Vezmeme-li v úvahu pravidla pro násobení mocnin se stejným základem, dostaneme:

Pokud někdo neví, tohle byl skutečný úkol z jednotné státní zkoušky :)

Logaritmická jednotka a logaritmická nula

Na závěr uvedu dvě identity, které lze jen stěží nazvat vlastnostmi – spíše jsou to důsledky definice logaritmu. Neustále se objevují v problémech a kupodivu dělají problémy i „pokročilým“ studentům.

  1. logaa = 1 je. Pamatujte si jednou provždy: logaritmus k libovolnému základu a této základny samotné je roven jedné.
  2. loga 1 = 0 je. Báze a může být cokoliv, ale pokud argument obsahuje jedničku, logaritmus je roven nule! Protože a0 = 1 je přímým důsledkem definice.

To jsou všechny vlastnosti. Nezapomeňte si je procvičit v praxi! Stáhněte si cheat sheet na začátku lekce, vytiskněte si ho a vyřešte problémy.

Viz také:

Logaritmus b na základ a označuje výraz. Vypočítat logaritmus znamená najít mocninu x (), při které je rovnost splněna

Základní vlastnosti logaritmu

Je nutné znát výše uvedené vlastnosti, protože téměř všechny problémy a příklady související s logaritmy jsou řešeny na jejich základě. Zbytek exotických vlastností lze odvodit pomocí matematických manipulací s těmito vzorci

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Při výpočtu vzorce pro součet a rozdíl logaritmů (3.4) narazíte poměrně často. Zbytek je poněkud složitý, ale v řadě úloh je nepostradatelný pro zjednodušení složitých výrazů a výpočet jejich hodnot.

Běžné případy logaritmů

Některé z běžných logaritmů jsou ty, ve kterých je základ dokonce deset, exponenciální nebo dva.
Logaritmus se základem deset se obvykle nazývá dekadický logaritmus a je jednoduše označen lg(x).

Z nahrávky je patrné, že v nahrávce nejsou napsány základy. Například

Přirozený logaritmus je logaritmus, jehož základem je exponent (označený ln(x)).

Exponent je 2,718281828…. Chcete-li si zapamatovat exponent, můžete si prostudovat pravidlo: exponent se rovná 2,7 a dvojnásobku roku narození Lva Nikolajeviče Tolstého. Znáte-li toto pravidlo, budete znát jak přesnou hodnotu exponentu, tak datum narození Lva Tolstého.

A další důležitý logaritmus k základu dva je označen

Derivace logaritmu funkce je rovna jedné dělené proměnnou

Integrální nebo primitivní logaritmus je určen vztahem

Daný materiál vám postačí k řešení široké třídy problémů souvisejících s logaritmy a logaritmy. Abychom vám pomohli látku pochopit, uvedu pouze několik běžných příkladů ze školních osnov a univerzit.

Příklady pro logaritmy

Logaritmické výrazy

Příklad 1
A). x=10ac^2 (a>0,c>0).

Pomocí vlastností 3.5 vypočítáme

2.
Vlastností rozdílu logaritmů máme

3.
Pomocí vlastností 3.5 najdeme

4. Kde .

Zdánlivě složitý výraz je zjednodušen do tvaru pomocí řady pravidel

Hledání logaritmických hodnot

Příklad 2. Najděte x if

Řešení. Pro výpočet použijeme na poslední termín 5 a 13 vlastností

Dáme to na záznam a truchlíme

Protože se základy rovnají, dáváme rovnítko mezi výrazy

Logaritmy. První úroveň.

Nechť je uvedena hodnota logaritmů

Vypočítejte log(x), pokud

Řešení: Vezměme logaritmus proměnné a zapišme logaritmus přes součet jejích členů


Toto je jen začátek našeho seznámení s logaritmy a jejich vlastnostmi. Procvičte si výpočty, obohaťte své praktické dovednosti – znalosti, které získáte, budete brzy potřebovat k řešení logaritmických rovnic. Po prostudování základních metod řešení takových rovnic rozšíříme vaše znalosti o další neméně důležité téma - logaritmické nerovnice...

Základní vlastnosti logaritmů

Logaritmy, stejně jako všechna čísla, lze sčítat, odečítat a transformovat všemi způsoby. Protože ale logaritmy nejsou úplně obyčejná čísla, existují zde pravidla, která se nazývají hlavní vlastnosti.

Tato pravidla rozhodně musíte znát – bez nich nelze vyřešit jediný vážný logaritmický problém. Navíc je jich velmi málo – vše se dá naučit za jeden den. Pojďme tedy začít.

Sčítání a odčítání logaritmů

Uvažujme dva logaritmy se stejnými základy: logax a logay. Poté je lze sčítat a odečítat a:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

Součet logaritmů se tedy rovná logaritmu součinu a rozdíl se rovná logaritmu kvocientu. Poznámka: zde je klíčový bod identické důvody. Pokud jsou důvody jiné, tato pravidla nefungují!

Tyto vzorce vám pomohou vypočítat logaritmický výraz, i když nejsou uvažovány jeho jednotlivé části (viz lekce „Co je to logaritmus“). Podívejte se na příklady a uvidíte:

Úkol. Najděte hodnotu výrazu: log6 4 + log6 9.

Protože logaritmy mají stejné základy, použijeme součtový vzorec:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Úkol. Najděte hodnotu výrazu: log2 48 − log2 3.

Základy jsou stejné, použijeme rozdílový vzorec:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Úkol. Najděte hodnotu výrazu: log3 135 − log3 5.

Základy jsou opět stejné, takže máme:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Jak vidíte, původní výrazy jsou tvořeny „špatnými“ logaritmy, které nejsou počítány samostatně. Ale po transformacích se získají zcela normální čísla. Mnoho testů je založeno na této skutečnosti. Ano, na Jednotné státní zkoušce jsou se vší vážností (někdy prakticky beze změn) nabízeny výrazy podobné testu.

Extrahování exponentu z logaritmu

Nyní si úkol trochu zkomplikujeme. Co když základem nebo argumentem logaritmu je mocnina? Potom lze exponent tohoto stupně vyjmout ze znaménka logaritmu podle následujících pravidel:

Je snadné vidět, že poslední pravidlo následuje první dvě. Ale stejně je lepší si to pamatovat - v některých případech to výrazně sníží množství výpočtů.

Všechna tato pravidla mají samozřejmě smysl, pokud je dodržena ODZ logaritmu: a > 0, a ≠ 1, x > 0. A ještě něco: naučte se aplikovat všechny vzorce nejen zleva doprava, ale i naopak , tj. Čísla před znaménkem logaritmu můžete zadat do samotného logaritmu.

Jak řešit logaritmy

To je nejčastěji vyžadováno.

Úkol. Najděte hodnotu výrazu: log7 496.

Zbavme se stupně v argumentu pomocí prvního vzorce:
log7 496 = 6 log7 49 = 6 2 = 12

Úkol. Najděte význam výrazu:

Všimněte si, že jmenovatel obsahuje logaritmus, jehož základem a argumentem jsou přesné mocniny: 16 = 24; 49 = 72. Máme:

Myslím, že poslední příklad vyžaduje určité objasnění. Kam zmizely logaritmy? Do poslední chvíle pracujeme pouze se jmenovatelem. Předložili jsme základ a argument tam stojícího logaritmu ve formě mocnin a vyjmuli exponenty - dostali jsme „třípatrový“ zlomek.

Nyní se podívejme na hlavní zlomek. Čitatel i jmenovatel obsahují stejné číslo: log2 7. Protože log2 7 ≠ 0, můžeme zlomek zmenšit - 2/4 zůstanou ve jmenovateli. Podle pravidel aritmetiky lze čtyři převést do čitatele, což se také stalo. Výsledkem byla odpověď: 2.

Přechod na nový základ

Když mluvíme o pravidlech pro sčítání a odečítání logaritmů, konkrétně jsem zdůraznil, že pracují pouze se stejnými základy. Co když jsou důvody jiné? Co když to nejsou přesné mocniny stejného čísla?

Na pomoc přicházejí vzorce pro přechod na nový základ. Formulujme je ve formě věty:

Nechť je uveden logaritmus logax. Pak pro libovolné číslo c takové, že c > 0 a c ≠ 1 platí rovnost:

Konkrétně, pokud nastavíme c = x, dostaneme:

Z druhého vzorce vyplývá, že základ a argument logaritmu lze prohodit, ale v tomto případě je celý výraz „převrácen“, tzn. logaritmus se objeví ve jmenovateli.

Tyto vzorce se zřídka vyskytují v běžných číselných výrazech. Jejich výhodnost lze vyhodnotit pouze při řešení logaritmických rovnic a nerovnic.

Existují však problémy, které se nedají vyřešit vůbec jinak než přestěhováním do nové základny. Podívejme se na několik z nich:

Úkol. Najděte hodnotu výrazu: log5 16 log2 25.

Všimněte si, že argumenty obou logaritmů obsahují přesné mocniny. Vyjmeme ukazatele: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Nyní „obrátíme“ druhý logaritmus:

Vzhledem k tomu, že se součin při přeskupování faktorů nemění, v klidu jsme vynásobili čtyři a dvě a pak jsme se zabývali logaritmy.

Úkol. Najděte hodnotu výrazu: log9 100 lg 3.

Základem a argumentem prvního logaritmu jsou přesné mocniny. Pojďme si to zapsat a zbavit se indikátorů:

Nyní se zbavme desetinného logaritmu přechodem na nový základ:

Základní logaritmická identita

Často je v procesu řešení nutné reprezentovat číslo jako logaritmus k danému základu. V tomto případě nám pomohou následující vzorce:

V prvním případě se číslo n stane exponentem v argumentu. Číslo n může být naprosto cokoliv, protože je to pouze logaritmická hodnota.

Druhý vzorec je vlastně parafrázovaná definice. Tak se tomu říká: .

Co se vlastně stane, když číslo b umocníme takovou mocninu, že číslo b této mocnině dá číslo a? Správně: výsledkem je stejné číslo a. Přečtěte si tento odstavec ještě jednou pozorně – mnoho lidí se na něm zasekne.

Stejně jako vzorce pro přesun na novou základnu je základní logaritmická identita někdy jediným možným řešením.

Úkol. Najděte význam výrazu:

Všimněte si, že log25 64 = log5 8 - jednoduše vzal druhou mocninu ze základu a argumentu logaritmu. Vezmeme-li v úvahu pravidla pro násobení mocnin se stejným základem, dostaneme:

Pokud někdo neví, tohle byl skutečný úkol z jednotné státní zkoušky :)

Logaritmická jednotka a logaritmická nula

Na závěr uvedu dvě identity, které lze jen stěží nazvat vlastnostmi – spíše jsou to důsledky definice logaritmu. Neustále se objevují v problémech a kupodivu dělají problémy i „pokročilým“ studentům.

  1. logaa = 1 je. Pamatujte si jednou provždy: logaritmus k libovolnému základu a této základny samotné je roven jedné.
  2. loga 1 = 0 je. Báze a může být cokoliv, ale pokud argument obsahuje jedničku, logaritmus je roven nule! Protože a0 = 1 je přímým důsledkem definice.

To jsou všechny vlastnosti. Nezapomeňte si je procvičit v praxi! Stáhněte si cheat sheet na začátku lekce, vytiskněte si ho a vyřešte problémy.

Logaritmické výrazy, řešení příkladů. V tomto článku se podíváme na problémy související s řešením logaritmů. Úkoly kladou otázku hledání významu výrazu. Je třeba poznamenat, že koncept logaritmu se používá v mnoha úlohách a pochopení jeho významu je nesmírně důležité. V případě jednotné státní zkoušky se logaritmus používá při řešení rovnic, v aplikovaných úlohách a také v úlohách spojených se studiem funkcí.

Uveďme příklady, abychom pochopili samotný význam logaritmu:


Základní logaritmická identita:

Vlastnosti logaritmů, které je třeba si vždy pamatovat:

*Logaritmus součinu se rovná součtu logaritmů faktorů.

* * *

*Logaritmus kvocientu (zlomku) se rovná rozdílu mezi logaritmy faktorů.

* * *

*Logaritmus exponentu se rovná součinu exponentu a logaritmu jeho základu.

* * *

*Přechod na nový základ

* * *

Další vlastnosti:

* * *

Výpočet logaritmů úzce souvisí s využitím vlastností exponentů.

Uveďme si některé z nich:

Podstatou této vlastnosti je, že při přenosu čitatele na jmenovatele a naopak se znaménko exponentu změní na opačné. Například:

Důsledek této vlastnosti:

* * *

Při zvýšení mocniny na mocninu zůstává základ stejný, ale exponenty se násobí.

* * *

Jak jste viděli, samotný koncept logaritmu je jednoduchý. Hlavní věc je, že potřebujete dobrou praxi, která vám dá určitou dovednost. Samozřejmě je nutná znalost vzorců. Pokud nebyla rozvinuta dovednost převádět elementární logaritmy, můžete při řešení jednoduchých úloh snadno udělat chybu.

Cvičte, řešte nejprve nejjednodušší příklady z kurzu matematiky, pak přejděte ke složitějším. V budoucnu určitě ukážu, jak se řeší „děsivé“ logaritmy, na Jednotné státní zkoušce se neobjeví, ale jsou zajímavé, nenechte si je ujít!

To je vše! Hodně štěstí!

S pozdravem Alexander Krutitskikh

P.S: Byl bych vděčný, kdybyste mi o webu řekli na sociálních sítích.

Instrukce

Napište daný logaritmický výraz. Pokud výraz používá logaritmus 10, pak je jeho zápis zkrácen a vypadá takto: lg b je dekadický logaritmus. Pokud má logaritmus jako základ číslo e, napište výraz: ln b – přirozený logaritmus. Rozumí se, že výsledkem libovolného je mocnina, na kterou musí být základní číslo zvýšeno, aby se získalo číslo b.

Při hledání součtu dvou funkcí je jednoduše musíte jednu po druhé diferencovat a sečíst výsledky: (u+v)" = u"+v";

Při hledání derivace součinu dvou funkcí je nutné derivaci první funkce vynásobit druhou a přidat derivaci druhé funkce vynásobenou první funkcí: (u*v)" = u"*v +v"*u;

Abychom našli derivaci podílu dvou funkcí, je nutné od součinu derivace dělitele vynásobeného funkcí dělitele odečíst součin derivace dělitele vynásobeného funkcí děliče a vydělit to vše pomocí funkce dělitele na druhou. (u/v)" = (u"*v-v"*u)/v^2;

Pokud je dána komplexní funkce, pak je nutné vynásobit derivaci vnitřní funkce a derivaci vnější. Nechť y=u(v(x)), pak y"(x)=y"(u)*v"(x).

Pomocí výše získaných výsledků můžete rozlišit téměř jakoukoli funkci. Pojďme se tedy podívat na několik příkladů:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2 *X));
Existují také problémy týkající se výpočtu derivace v bodě. Nechť je dána funkce y=e^(x^2+6x+5), musíte najít hodnotu funkce v bodě x=1.
1) Najděte derivaci funkce: y"=e^(x^2-6x+5)*(2*x +6).

2) Vypočítejte hodnotu funkce v daném bodě y"(1)=8*e^0=8

Video k tématu

Užitečná rada

Naučte se tabulku elementárních derivací. To výrazně ušetří čas.

Prameny:

  • derivace konstanty

Jaký je tedy rozdíl mezi iracionální rovnicí a racionální? Pokud je neznámá proměnná pod znaménkem druhé odmocniny, pak je rovnice považována za iracionální.

Instrukce

Hlavní metodou řešení takových rovnic je metoda konstrukce obou stran rovnic do čtverce. Nicméně. to je přirozené, první věc, kterou musíte udělat, je zbavit se znaménka. Tato metoda není technicky náročná, ale někdy může vést k potížím. Například rovnice je v(2x-5)=v(4x-7). Umocněním obou stran získáte 2x-5=4x-7. Řešení takové rovnice není obtížné; x=1. Ale číslo 1 nebude uvedeno rovnic. Proč? Dosaďte do rovnice jedničku místo hodnoty x. A pravá a levá strana budou obsahovat výrazy, které nedávají smysl, tzn. Tato hodnota není platná pro druhou odmocninu. Proto je 1 cizí kořen, a proto tato rovnice nemá žádné kořeny.

Iracionální rovnice se tedy řeší metodou kvadratury obou jejích stran. A po vyřešení rovnice je nutné odříznout cizí kořeny. Chcete-li to provést, dosaďte nalezené kořeny do původní rovnice.

Zvažte další.
2х+vх-3=0
Tuto rovnici lze samozřejmě vyřešit pomocí stejné rovnice jako předchozí. Přesunout sloučeniny rovnic, které nemají odmocninu, na pravou stranu a poté použijte metodu kvadratury. vyřešit výslednou racionální rovnici a kořeny. Ale i jiný, elegantnější. Zadejte novou proměnnou; vх=y. Podle toho dostanete rovnici ve tvaru 2y2+y-3=0. Tedy obyčejná kvadratická rovnice. Najděte jeho kořeny; y1=1 a y2=-3/2. Dále vyřešte dva rovnic vх=1; vх=-3/2. Druhá rovnice nemá kořeny, z první zjistíme, že x=1. Nezapomeňte zkontrolovat kořeny.

Řešení identit je celkem jednoduché. K tomu je nutné provádět identické transformace, dokud není dosaženo stanoveného cíle. S pomocí jednoduchých aritmetických operací bude tedy daný problém vyřešen.

Budete potřebovat

  • - papír;
  • - pero.

Instrukce

Nejjednodušší z takových transformací jsou algebraické zkrácené násobení (např. druhá mocnina součtu (rozdíl), rozdíl druhých mocnin, součet (rozdíl), třetí mocnina součtu (rozdíl)). Kromě toho existuje mnoho goniometrických vzorců, což jsou v podstatě stejné identity.

Druhá mocnina součtu dvou členů se skutečně rovná druhé mocnině prvního plus dvojnásobku součinu prvního a druhého a plus druhé mocniny druhého, tedy (a+b)^2= (a+ b)(a+b)=a^2+ab +ba+b ^2=a^2+2ab+b^2.

Zjednodušte obojí

Obecné principy řešení

Zopakujte si z učebnice matematické analýzy nebo vyšší matematiky, co je to určitý integrál. Jak známo, řešením určitého integrálu je funkce, jejíž derivace dá integrand. Tato funkce se nazývá primitivní. Na základě tohoto principu jsou sestrojeny hlavní integrály.
Určete podle typu integrandu, který z tabulkových integrálů je v tomto případě vhodný. Ne vždy je možné to určit okamžitě. Často se tabulkový tvar stane patrným až po několika transformacích, aby se integrand zjednodušil.

Variabilní metoda výměny

Pokud je integrand goniometrickou funkcí, jejímž argumentem je polynom, zkuste použít metodu změny proměnných. Chcete-li to provést, nahraďte polynom v argumentu integrandu nějakou novou proměnnou. Na základě vztahu mezi novými a starými proměnnými určete nové limity integrace. Odlišením tohoto výrazu najděte nový diferenciál v . Získáte tak nový tvar předchozího integrálu, blízký nebo dokonce odpovídající nějakému tabulkovému.

Řešení integrálů druhého druhu

Pokud je integrál integrálem druhého druhu, vektorovou formou integrandu, pak budete muset použít pravidla pro přechod z těchto integrálů na skalární. Jedním z takových pravidel je Ostrogradsky-Gaussův vztah. Tento zákon nám umožňuje přejít od rotorového toku určité vektorové funkce k trojnému integrálu přes divergenci daného vektorového pole.

Substituce integračních limitů

Po nalezení primitivního prvku je nutné dosadit limity integrace. Nejprve dosaďte do výrazu pro primitivní funkci hodnotu horní meze. Dostanete nějaké číslo. Dále od výsledného čísla odečtěte další číslo získané od dolní meze do primitivní. Je-li jednou z limit integrace nekonečno, pak při dosazení do primitivní funkce je nutné jít na limitu a najít, k čemu výraz směřuje.
Pokud je integrál dvourozměrný nebo trojrozměrný, budete muset hranice integrace znázornit geometricky, abyste pochopili, jak integrál vyhodnotit. Ve skutečnosti v případě, řekněme, trojrozměrného integrálu, mohou být limity integrace celé roviny, které omezují objem, který je integrován.

\(a^(b)=c\) \(\Šipka doleva\) \(\log_(a)(c)=b\)

Pojďme si to vysvětlit jednodušeji. Například \(\log_(2)(8)\) se rovná mocnině, na kterou musí být umocněno \(2\), aby bylo dosaženo \(8\). Z toho je zřejmé, že \(\log_(2)(8)=3\).

Příklady:

\(\log_(5)(25)=2\)

protože \(5^(2)=25\)

\(\log_(3)(81)=4\)

protože \(3^(4)=81\)

\(\log_(2)\)\(\frac(1)(32)\) \(=-5\)

protože \(2^(-5)=\)\(\frac(1)(32)\)

Argument a základ logaritmu

Každý logaritmus má následující „anatomii“:

Argument logaritmu se obvykle zapisuje na jeho úrovni a základna se zapisuje v dolním indexu blíže znaménku logaritmu. A tento záznam zní takto: „logaritmus z dvaceti pěti na základ pět“.

Jak vypočítat logaritmus?

Chcete-li vypočítat logaritmus, musíte odpovědět na otázku: na jakou mocninu by se měla základna zvýšit, abyste získali argument?

Například, vypočítejte logaritmus: a) \(\log_(4)(16)\) b) \(\log_(3)\)\(\frac(1)(3)\) c) \(\log_(\ sqrt (5))(1)\) d) \(\log_(\sqrt(7))(\sqrt(7))\) e) \(\log_(3)(\sqrt(3))\)

a) Na jakou mocninu se musí zvýšit \(4\), aby dostal \(16\)? Pochopitelně ten druhý. Proto:

\(\log_(4)(16)=2\)

\(\log_(3)\)\(\frac(1)(3)\) \(=-1\)

c) Na jakou mocninu se musí zvýšit \(\sqrt(5)\), aby se dostalo \(1\)? Jaká síla dělá nějakou jedničku? Nula, samozřejmě!

\(\log_(\sqrt(5))(1)=0\)

d) Na jakou mocninu musí být \(\sqrt(7)\) zvýšeno, aby bylo dosaženo \(\sqrt(7)\)? Za prvé, jakékoli číslo s první mocninou se rovná samo sobě.

\(\log_(\sqrt(7))(\sqrt(7))=1\)

e) Na jakou mocninu je třeba zvýšit \(3\), aby se získal \(\sqrt(3)\)? Z toho víme, že se jedná o zlomkovou mocninu, což znamená, že druhá odmocnina je mocninou \(\frac(1)(2)\) .

\(\log_(3)(\sqrt(3))=\)\(\frac(1)(2)\)

Příklad : Vypočítat logaritmus \(\log_(4\sqrt(2))(8)\)

Řešení :

\(\log_(4\sqrt(2))(8)=x\)

Musíme najít hodnotu logaritmu, označme ji jako x. Nyní použijeme definici logaritmu:
\(\log_(a)(c)=b\) \(\Šipka doleva\) \(a^(b)=c\)

\((4\sqrt(2))^(x)=8\)

Co spojuje \(4\sqrt(2)\) a \(8\)? Dvě, protože obě čísla mohou být reprezentována dvojkami:
\(4=2^(2)\) \(\sqrt(2)=2^(\frac(1)(2))\) \(8=2^(3)\)

\(((2^(2)\cdot2^(\frac(1)(2))))^(x)=2^(3)\)

Vlevo používáme vlastnosti stupně: \(a^(m)\cdot a^(n)=a^(m+n)\) a \((a^(m))^(n)= a^(m\cdot n)\)

\(2^(\frac(5)(2)x)=2^(3)\)

Základy se rovnají, přecházíme k rovnosti ukazatelů

\(\frac(5x)(2)\) \(=3\)


Vynásobte obě strany rovnice \(\frac(2)(5)\)


Výsledná odmocnina je hodnota logaritmu

Odpovědět : \(\log_(4\sqrt(2))(8)=1,2\)

Proč byl logaritmus vynalezen?

Abychom to pochopili, vyřešme rovnici: \(3^(x)=9\). Stačí přiřadit \(x\), aby rovnice fungovala. Samozřejmě, \(x=2\).

Nyní vyřešte rovnici: \(3^(x)=8\).Čemu se x rovná? O to tu jde.

Ti nejchytřejší řeknou: "X je o něco méně než dva." Jak přesně napsat toto číslo? K zodpovězení této otázky byl vynalezen logaritmus. Díky němu zde může být odpověď zapsána jako \(x=\log_(3)(8)\).

Chci zdůraznit, že \(\log_(3)(8)\), jako každý logaritmus je jen číslo. Ano, vypadá to nezvykle, ale je to krátké. Protože pokud bychom to chtěli zapsat jako desetinné, vypadalo by to takto: \(1.892789260714.....\)

Příklad : Vyřešte rovnici \(4^(5x-4)=10\)

Řešení :

\(4^(5x-4)=10\)

\(4^(5x-4)\) a \(10\) nelze přenést na stejnou základnu. To znamená, že se bez logaritmu neobejdete.

Použijme definici logaritmu:
\(a^(b)=c\) \(\Šipka doleva\) \(\log_(a)(c)=b\)

\(\log_(4)(10)=5x-4\)

Otočme rovnici tak, aby X bylo vlevo

\(5x-4=\log_(4)(10)\)

Před námi. Přesuneme \(4\) doprava.

A nebojte se logaritmu, zacházejte s ním jako s obyčejným číslem.

\(5x=\log_(4)(10)+4\)

Vydělte rovnici 5

\(x=\)\(\frac(\log_(4)(10)+4)(5)\)


Toto je náš kořen. Ano, vypadá to nezvykle, ale nevybírají si odpověď.

Odpovědět : \(\frac(\log_(4)(10)+4)(5)\)

Desetinné a přirozené logaritmy

Jak je uvedeno v definici logaritmu, jeho základem může být jakékoli kladné číslo kromě jedné \((a>0, a\neq1)\). A mezi všemi možnými bázemi jsou dva, které se vyskytují tak často, že pro logaritmy s nimi byl vynalezen speciální krátký zápis:

Přirozený logaritmus: logaritmus, jehož základem je Eulerovo číslo \(e\) (rovné přibližně \(2,7182818…\)) a logaritmus je zapsán jako \(\ln(a)\).

to znamená, \(\ln(a)\) je totéž jako \(\log_(e)(a)\)

Desetinný logaritmus: Logaritmus, jehož základ je 10, se zapisuje \(\lg(a)\).

to znamená, \(\lg(a)\) je totéž jako \(\log_(10)(a)\), kde \(a\) je nějaké číslo.

Základní logaritmická identita

Logaritmy mají mnoho vlastností. Jedna z nich se nazývá „Základní logaritmická identita“ a vypadá takto:

\(a^(\log_(a)(c))=c\)

Tato vlastnost vyplývá přímo z definice. Podívejme se, jak přesně tento vzorec vznikl.

Připomeňme si krátký zápis definice logaritmu:

jestliže \(a^(b)=c\), pak \(\log_(a)(c)=b\)

To znamená, že \(b\) je totéž jako \(\log_(a)(c)\). Potom můžeme do vzorce \(a^(b)=c\) místo \(b\) napsat \(\log_(a)(c)\). Ukázalo se, že \(a^(\log_(a)(c))=c\) - hlavní logaritmická identita.

Můžete najít další vlastnosti logaritmů. S jejich pomocí můžete zjednodušit a vypočítat hodnoty výrazů s logaritmy, které je obtížné vypočítat přímo.

Příklad : Najděte hodnotu výrazu \(36^(\log_(6)(5))\)

Řešení :

Odpovědět : \(25\)

Jak zapsat číslo jako logaritmus?

Jak bylo uvedeno výše, každý logaritmus je pouze číslo. Platí to i naopak: libovolné číslo lze zapsat jako logaritmus. Například víme, že \(\log_(2)(4)\) se rovná dvěma. Pak místo dvou můžete napsat \(\log_(2)(4)\).

Ale \(\log_(3)(9)\) se také rovná \(2\), což znamená, že můžeme také psát \(2=\log_(3)(9)\) . Podobně s \(\log_(5)(25)\) as \(\log_(9)(81)\) atd. To znamená, že se ukazuje

\(2=\log_(2)(4)=\log_(3)(9)=\log_(4)(16)=\log_(5)(25)=\log_(6)(36)=\ log_(7)(49)...\)

Pokud tedy potřebujeme, můžeme napsat dvojku jako logaritmus s libovolným základem kdekoli (ať už v rovnici, ve výrazu nebo v nerovnosti) - jednoduše zapíšeme základ na druhou jako argument.

S trojkou je to stejné – lze ji zapsat jako \(\log_(2)(8)\), nebo jako \(\log_(3)(27)\), nebo jako \(\log_(4)( 64) \)... Zde zapíšeme základ v krychli jako argument:

\(3=\log_(2)(8)=\log_(3)(27)=\log_(4)(64)=\log_(5)(125)=\log_(6)(216)=\ log_(7)(343)...\)

A se čtyřmi:

\(4=\log_(2)(16)=\log_(3)(81)=\log_(4)(256)=\log_(5)(625)=\log_(6)(1296)=\ log_(7)(2401)...\)

A s mínus jedna:

\(-1=\) \(\log_(2)\)\(\frac(1)(2)\) \(=\) \(\log_(3)\)\(\frac(1)( 3)\) \(=\) \(\log_(4)\)\(\frac(1)(4)\) \(=\) \(\log_(5)\)\(\frac(1) )(5)\) \(=\) \(\log_(6)\)\(\frac(1)(6)\) \(=\) \(\log_(7)\)\(\frac (1) (7)\) \(...\)

A s jednou třetinou:

\(\frac(1)(3)\) \(=\log_(2)(\sqrt(2))=\log_(3)(\sqrt(3))=\log_(4)(\sqrt( 4))=\log_(5)(\sqrt(5))=\log_(6)(\sqrt(6))=\log_(7)(\sqrt(7))...\)

Jakékoli číslo \(a\) může být reprezentováno jako logaritmus se základem \(b\): \(a=\log_(b)(b^(a))\)

Příklad : Najděte význam výrazu \(\frac(\log_(2)(14))(1+\log_(2)(7))\)

Řešení :

Odpovědět : \(1\)

Logaritmus kladného čísla b na základ a (a>0, a se nerovná 1) je číslo c takové, že a c = b: log a b = c ⇔ a c = b (a > 0, a ≠ 1, b > 0)       

Všimněte si, že logaritmus nezáporného čísla není definován. Kromě toho musí být základem logaritmu kladné číslo, které se nerovná 1. Pokud například odmocníme -2, dostaneme číslo 4, ale to neznamená, že logaritmus se základem -2 ze 4 se rovná 2.

Základní logaritmická identita

a log a b = b (a > 0, a ≠ 1) (2)

Je důležité, aby rozsah definice pravé a levé strany tohoto vzorce byl odlišný. Levá strana je definována pouze pro b>0, a>0 a a ≠ 1. Pravá strana je definována pro libovolné b a vůbec nezávisí na a. Použití základní logaritmické „identity“ při řešení rovnic a nerovnic tedy může vést ke změně OD.

Dva zřejmé důsledky definice logaritmu

log a a = 1 (a > 0, a ≠ 1) (3)
log a 1 = 0 (a > 0, a ≠ 1) (4)

Když totiž zvýšíme číslo a na první mocninu, dostaneme stejné číslo, a když ho zvýšíme na nulovou mocninu, dostaneme jedničku.

Logaritmus součinu a logaritmus kvocientu

log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0) (5)

Log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0) (6)

Chtěl bych školáky varovat před bezmyšlenkovitým používáním těchto vzorců při řešení logaritmických rovnic a nerovnic. Při jejich použití „zleva doprava“ se ODZ zužuje a při přechodu od součtu nebo rozdílu logaritmů k logaritmu součinu nebo kvocientu se ODZ rozšiřuje.

Výraz log a (f (x) g (x)) je skutečně definován ve dvou případech: když jsou obě funkce striktně kladné, nebo když jsou f(x) a g(x) obě menší než nula.

Převedeme-li tento výraz na součet log a f (x) + log a g (x), jsme nuceni se omezit pouze na případ, kdy f(x)>0 a g(x)>0. Dochází ke zúžení rozsahu přijatelných hodnot, a to je kategoricky nepřijatelné, protože to může vést ke ztrátě řešení. Podobný problém existuje pro vzorec (6).

Stupeň lze odečíst ze znaménka logaritmu

log a b p = p log a b (a > 0, a ≠ 1, b > 0) (7)

A znovu bych rád vyzval k přesnosti. Zvažte následující příklad:

Log a (f (x) 2 = 2 log a f (x)

Levá strana rovnosti je samozřejmě definována pro všechny hodnoty f(x) kromě nuly. Pravá strana je pouze pro f(x)>0! Vyjmutím stupně z logaritmu opět zúžíme ODZ. Opačný postup vede k rozšíření rozsahu přijatelných hodnot. Všechny tyto poznámky platí nejen pro mocninu 2, ale také pro jakoukoli sudou mocninu.

Vzorec pro přechod na nový základ

log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1) (8)

Ten vzácný případ, kdy se ODZ během transformace nemění. Pokud jste moudře zvolili základ c (kladný a nerovná se 1), vzorec pro přechod na nový základ je zcela bezpečný.

Zvolíme-li číslo b jako nový základ c, získáme důležitý speciální případ vzorce (8):

Log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1) (9)

Několik jednoduchých příkladů s logaritmy

Příklad 1. Vypočítejte: log2 + log50.
Řešení. log2 + log50 = log100 = 2. Použili jsme vzorec pro součet logaritmů (5) a definici dekadického logaritmu.


Příklad 2. Vypočítejte: lg125/lg5.
Řešení. log125/log5 = log 5 125 = 3. Použili jsme vzorec pro přechod na nový základ (8).

Tabulka vzorců souvisejících s logaritmy

a log a b = b (a > 0, a ≠ 1)
log a a = 1 (a > 0, a ≠ 1)
log a 1 = 0 (a > 0, a ≠ 1)
log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b p = p log a b (a > 0, a ≠ 1, b > 0)
log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1)
log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1)