Обоснование решений методами свертки. Метод последовательных уступок

Другая очень распространенная группа методов скаляризации векторной задачи математического программирования - свертка критериев.

Существует большое количество разных видов сверток . Теоретически все они базируются на подходе, связанном с понятием функции полезности лица, принимающего решение.

При данном подходе предполагается, что лицо, принимающее решение, всегда имеет функцию полезности, независимо от того, может ли лицо, принимающее решение задать ее в явном виде (т.е. дать ее математическое описание). Эта функция отображает векторы критериев на действительную прямую так, что большее значение на этой прямой соответствует более предпочтительному вектору критериев. Смысл разных сверток состоит в том, чтобы из нескольких критериев получить один «коэффициент качества» (сводный критерий), приближенно моделируя таким образом неизвестную (не заданную в явном виде) функцию полезности лица, принимающего решение. Наиболее популярной сверткой является метод взвешенных сумм с точечным оцениванием весов. При этом задается вектор весовых коэффициентов критериев, характеризующий относительную важность того или иного критерия:

A = {ak ,k = 1~K}. (64)

Весовые коэффициенты обычно используются в нормированном виде и удовлетворяют равенству:

X ak = 1, ak > 0, Vk е K , (65)

т.е. предполагается, что весовые коэффициенты неотрицательны. Каждый критерий умножается на свой весовой коэффициент, а затем все взвешенные критерии суммируются и образуют взвешенную целевую функцию, значение которой интерпретируются как «коэффициент качества» полученного решения. Полученная скаляризованная функция максимизируется на допустимой области ограничений.

Получается однокритериальная (скалярная) задача математического программирования:

F0 = max X af (X). (66)

В результате решения данной задачи получается точка оптимума X0.

Основным достоинством данной свертки является то, что с ней связаны классические достаточные и необходимые условия оптимальности по Парето (теоремы Карлина).

Теорема Карлина 1.

В выпуклой задаче многокритериальной оптимизации точка X0 е S оптимальна по Парето, если существует вектор весовых коэффициентов A0 = {a° > 0, k = 1,K}, для которого выполняется соотношение:

X«Оf0(X0) = maxX«0h (X). (67)

Теорема Карлина 2.

Если в выпуклой задаче многокритериальной оптимизации точка X0 е S Парето-оптимальна, то существует вектор весовых коэффициентов A0 = {a° > 0, к = 1,К}, для которого выполняется соотношение:

X«0f^X°) = maxX«0fk (X). (68)

«h (X) =ma„xXakJkк=1 40eS к =1

Согласно данным теоремам, данную свертку можно использовать для получения Парето-оптимальных точек.

Примером данной свертки может служить итоговый рейтинг надежности банка Кромонова, полученный как аддитивная свертка ряда коэффициентов.

Достоинством данного метода является то, что он согласно теореме Карлина генерирует Парето-оптимальные точки. Однако ему присущ целый ряд фундаментальных недостатков. Во-первых, неявная функция полезности лица, принимающего решения, как правило, нелинейна, поэтому «истинные» веса критериев (т.е. такие веса, при которых градиент взвешенное целевой функции совпадает по направлению в градиентом функции полезности) будут меняться от точки к точке, поэтому можно говорить лишь о локально подходящих весах, кроме того, часто лицо, принимающее решение вообще не может задать весовые коэффициенты. Во-вторых, далеко не всегда потеря качества по одному из критериев компенсируется приращением качества по другому. Поэтому полученное решение, оптимальное в смысле единого суммарного критерия, может характеризоваться низким качеством по ряду частных критериев и быть поэтому абсолютно неприемлемым. В-третьих, полученное решение часто бывает неустойчиво, т. е. малым приращениям весовых коэффициентов соответствуют большие приращения целевых функций. В-четвертых, свертка критериев разной физической природы не позволяет интерпретировать значение взвешенной целевой функции. В-пятых, значительные затруднения могут возникнуть в случае сильной корреляции между критериями.

Некоторые из вышеперечисленных недостатков могут быть скорректированы. Так, в случае разной физической (экономической) природы критериев возможна их нормализация и последующая свертка нормализованных критериев. Чтобы исключить неприемлемо низкие значения отдельных критериев, можно наложить дополнительные ограничения на эти критерии.

Другим методом борьбы с данным недостатком - неприемлемо низкими значениями отдельных критериев при хорошем значении суммарного критерия - является применение сверток не аддитивного, а мультипликативного вида:

F0 = max П (af (X))Рк. (69)

Однако данная свертка не получила большого распространения ввиду того, что существуют аналогичные, но более перспективные виды сверток.

Так, существует свертка вида: (70)

minF0 =X| f (X)V

fк Наиболее широкое применение данная свертка получила при p = 2, которая трактуется как минимизация суммы квадратов относительных отклонений функционалов от своих достижимых оптимальных значений. Данная точка в случае равноценности критериев показывает решение, наиболее близкое к недостижимой «идеальной» точке (в которой все критерии принимают свое максимальное значение). Однако данной свертке также свойственен следующий распространенный недостаток: «хорошее» значение сводного критерия достигается ценой низких значений некоторых частных критериев.

Другим направлением решения задачи многокритериального анализа является отказ от множества критериев путем сведения их к одному. Простейший подход, когда один критерий считают главным и упорядочивают лишь по нему, а остальные используют, только если у двух альтернатив значения главного критерия одинаковы (если одинаковы значения и главного, и второго по важности критерия, используют третий и т.д.), оказывается удовлетворительным лишь в редких случаях. Обычно среди критериев невозможно выделить важнейший. Лучше работают методы, учитывающие все значения вектора критериев. Такие составные критерии принято именовать свертками.

Рассмотрим основные способы свертки критериев. Сумма критериев представляет собой аддитивную свертку. Умножение значений критериев на весовые коэффициенты позволит придать им разную степень важности -чем больше вес критерия, тем большее влияние он окажет на окончательный результат отбора.

Произведение критериев является мультипликативной сверткой. В этом случае, подобно введению весов в аддитивной свертке, можно перед перемножением критериев возвести их в степень тем большую, чем больше важность, придаваемая критерию. Очевидно, что мультипликативная свертка оправданна, если критерии неотрицательны–иначе правило «минус на минус дает плюс» сыграет с нами плохую шутку, сделав «хорошее» значение свертки из двух заведомо плохих критериев. Впрочем, если только один из критериев принимает отрицательные значения, подобного рода парадоксы не возникают, и мы можем пользоваться мультипликативной сверткой. Также нужно учитывать, что если один из критериев равен нулю, то и мультипликативная свертка равна нулю, для аддитивной же свертки такое правило не выполняется. Вообще, в мультипликативной свертке по сравнению с аддитивной большее влияние оказывают те критерии, которые для данного объекта имеют низкие значения.

Аддитивная свертка наиболее приемлема для критериев, представляющих собой однородные по смыслу и близкие по масштабу значений величины, каковыми в нашей классификации являются прогнозные критерии. Например, комбинируя «математическое ожидание прибыли по логнормальному распределению» и «математическое ожидание прибыли по эмпирическому распределению», естественно взять в качестве критерия их сумму. С другой стороны, для свертывания таких классов критериев, как «математическое ожидание прибыли» и «вероятность прибыли» (по любому из распределений), лучше применять мультипликативную свертку. В этом случае мы используем полезное свойство произведения – если прогнозируемая вероятность прибыли близка к нулю, то и сводный критерий также будет стремиться нулю. Впрочем, в применении произведения есть дополнительная тонкость – если матожидание прибыли отрицательно, то, умножая его на меньшую вероятность, получаем величину более близкую к нулю и, следовательно, большую. Однако это не создает трудностей, если комбинации с отрицательным матожиданием прибыли просто не принимаются к рассмотрению.

Кроме аддитивной и мультипликативной, существует также селективная свертка, когда для каждого элемента исходного множества принимается в качестве значения свертки наименьшее (или наибольшее) значение из всего набора критериев. В главе 5 мы предложили методику минимаксной свертки для функций полезности. Аналогичные принципы могут использоваться и для свертки критериев.

При расчете свертки не стоит забывать о том, что критерии могут измеряться в разных единицах и иметь различный масштаб величин. Существует несколько способов их приведения к единой мере. Так, можно вычесть из значений критериев их средние значения и разделить на стандартные отклонения (метод нормализации) или же вычесть минимальные (минимальные по данной выборке или минимальные принципиально достижимые) значения, разделив затем на разность между максимальным и минимальным значением (в этом случае значения критерия будут лежать в интервале от нуля до единицы). Первый из предложенных способов более пригоден для построения аддитивной, второй–для мультипликативной свертки.

Еще один подход к построению свертки критериев состоит в нахождении расстояния от данного элемента до некоторого «идеального». Для этого значения критериев приводятся к интервалу (0,1), и предполагается, что идеальный вариант имеет все единичные оценки критериев (т. е. у него достигаются все максимально возможные значения критериев одновременно). Для каждого оцениваемого элемента исходного множества j рассчитываем значение свертки R по формуле

Для проведения описанных ниже исследований мы использовали аддитивную свертку с приведением критериев к единому масштабу методом умножения на поправочные коэффициенты. Это самый простой и грубый способ, но он наиболее приемлем при выполнении разноплановых статистических исследований, поскольку дает легко сопоставимые результаты. Для практической же работы предпочтительно использовать более усовершенствованные методы свертки и нормировки, подобные описанным выше, или другие, здесь не упомянутые.

Столкнувшись с необходимостью учета многокритериальности, исследователи стали искать возможные подходы к решению задач оптимального выбора при многих критериях.

Простейшим способом устранения многокритериальности це­лей является перевод задачи выбора в русло однокритериальности, например, путем объединения всех частных (локальных) показателей эффективности fj(x) в один общий (глобальный) критерий качества f(x)= F(f 1 (x) , f 2 (x) ,… f h (x)). Подобный прием носит название свертки критериев.

Каждый частный критерий отражает какое-то отдельное ка­чество варианта решения. Наилучший вариант должен характеризоваться наиболее удачным сочетанием всех этих отдельных качеств. Таким образом, поиск лучшего варианта решения сводится к отысканию экстремума единственной функции f(x)

x* arg max f(x) (3.11)

Остается только установить, как глобальное качество решения зависит от локальных качеств. Вид функции f(x) опреде­ляется тем, каким образом можно представить вклад каждого частного критерия f j (x) в общий критерий качества. Заметим, что для этого должна существовать возможность содержатель­ного сопоставления критериев.

Достаточно популярным способом служит запись глобального критерия в виде суммы локальных критериев (так называемая аддитивная свертка)

или в виде их произведения (мультипликативная свертка)

Формула (3.12) выражает принцип равномерной оптимальности. Им обычно пользуются, когда частные критерии эффективности имеют одинаковую размерность, например, выражены в денежных единицах. Тогда глобальный критерий качества решения будет представлять собой общую ценность варианта, которая слагается из ценностей его отдельных составляющих.

Формула (3.13) отражает принцип справедливого компромисса, в соответствии с которым общее качество решения должно равняться нулю, если хотя бы один из частных критериев эффективности принимает нулевое значение. Подобный подход применяется, например, для оценки общей надежности функциони­рования сложной системы, состоящей из многих частей, узлов и блоков. Интересно, что принцип справедливого компромисса был сформулирован еще английским математиком Ч. Доджсоном (более известным как английский писатель Льюис Кэрролл) в книге «История с узелками».

Существенным недостатком указанных способов свертки кри­териев является равная важность или значимость критериев для ЛПР, при которой низкие оценки по одним критериям можно компенсировать только за счет высоких оценок по другим кри­териям. Вследствие этого лучшим может оказаться вариант решения, сочетающий не самые лучшие критериальные оценки.

Чтобы избежать такого несоответствия, часто используют взвешенные свертки частных критериев эффективности вида

, (3.15),

,

где w j ≥ 0 - вес частного критерия f j (x) . Способ свертки частных критериев и значения их весов задаются ЛПР и отражают его предпочтения.

Некоторым промежуточным вариантом между крайне пессимистическими вариантами и крайне оптимистическими является критерии пессимизма-оптимизма (критерий Гурвица):

где 0≤β≤- «коэффициент пессимизма» или, если хотите, «коэффициент оптимизма». При β=1 оценка превращается в минимальную, а при β=0 она максимально оптимистична. Необходимо подчеркнуть, что определение значения β – это прерогатива руководителя, и с этой точки зрения, оценка чрезвычайно субъективна. А также

где a i – коэффициенты важности критериев (весовые коэффициенты), определяемые в большинстве случае субъективно; ; с – некоторое фиксированное значение критерия f(x i), например, некоторое его усредненное значение; f(x i) - частный i- й показатель (критерий) эффективности; f j (x i) – частный i- й показатель (критерий) эффективности j -й альтернативы (проекта).

Выбор того или иного вида свертки определяется характером взаимосвязей составляющих ее критериев (равнозначные, доминирующие и т.п.), а также некоторыми специальными ограничениями на область значений свертки, вытекающими из специфики конкретной задачи и предпочтений руководителя. Если частные показатели неоднородные, то они либо сводятся к однородным, либо коэффициенты a i учитывают не только важность, но и физическую размерность показателя.

Основная трудность, возникающая при формировании и использовании обобщенных критериев, заключается в сложности определения весовых коэффициентов, на которые возложена функция адекватного отражения степени важности критерия, его физической размерности и иногда других факторов. К недостаткам обобщенных критериев следует также отнести и то, что при оценке они не позволяют учитывать часто встречающуюся иерархическую зависимость результирующего показателя от значений частных показателей.

Однако это не означает, что СППР не должна использовать этот подход к оценке эффективности управляющих решений. Система предлагает его руководителю как один из возможных вариантов.

Многокритериальная оценка альтернатив решения может быть выполнена также на основе правил выбора по Парето . Здесь предпочтительным считается такой проект, для которого не существует другого проекта лучше данного хотя бы по одному показателю и не хуже него по всем остальным.

Описанные правила отбора не позволяют учесть относительную важность критериев оценки. Они нечувствительны к степени отличия значений критериальных показателей, и вероятность ошибки существенно повышается с ростом числа критериев.

Ряд методов анализа и отбора проектов основан на том, что критерий оценки формируется на основе характеристик того или иного выделенного аспекта реализации решения (главного критерия) -затраты, время, риски, вероятности успеха и т.п. В конечном итоге такой подход приводит к постановке и решению той или иной задачи математического программирования, в которой выделенный показатель выступает в качестве критерия, а к значениям остальных показателей предъявляются определенные требования, порождающие область ограничений.

В общем случае это приводит к решению многокритериальной задачи методом последовательных уступок, когда последовательно находится оптимальное решение по каждому из упорядоченных по важности критериев с назначением руководителем на каждом шаге решения задачи уступки величины по каждому из критериев, оптимизируемых на предыдущем шаге.

Пример . Требуется выбрать лучший вариант строительства предприятия из пяти предложенных вариантов A 1 – A 5 . Проект предварительно оценивается по четырем частным показателям эффективности:

f 1 – величина ожидаемой прибыли, которую будет давать предприятие;

f 2 – стоимость строительства предприятия;

f 3 – величина экологического ущерба от строительства;

f 4 – заинтересованность жителей района в строительстве.

Для простоты будем считать, что оценки по каждому из четырех критериев даются по шкале: 5, 4, 3, 2, 1, 0 баллов. Поскольку оценки по второму и третьему критериям необходимо минимизировать, а не максимизировать, как по остальным, то вместо них введем критерии f’ 2 =5- f 2 и f’ 3 =5- f 3 . По результатам экспертизы были получены следующие оценки качества проектов:

y 1 = (4; 3; 4; 3),

y 2 = (5; 3; 3; 3),

y 3 = (2; 4; 2; 4),

y 4 = (5; 3; 2; 3),

y 5 = (4; 4; 3; 4).

Сравним вектор y 1 с остальными векторами по отношению доминирования ≥ на множестве достижимости Y а. В данном случае пары векторов y 1 - у 2 , y 1 – y 3 , y 1 – y 4 , y 1 – y 5 несравнимы по отношению доминирования. Вектор y 1 запоминается как эффективный. Далее сравнивается вектор у 2 с векторами y 3 , y 4 , y 5 . Пары векторов у 2 - y 3 , у 2 - y 5 несравнимы. Так как у 2 > y 4 , вектор у 4 удаляется из рассмотрения как доминируемый, а вектор у 2 запоминается как эффективный. Для сравнения остаются векторы y 3 и y 5 . Поскольку y 5 > y 3 , то вектор y 3 удаляется из рассмотрения как доминируемый. В итоге остаются три вектора y 1 , y 2 и y 5 , образующие паретову границу Y* С Y a исоответствующие эффективные варианты А 1 , А 2 , А 5 , среди которых и следует сделать окончательный выбор.

Чтобы еще больше сузить паретово множество Y* и выделить единственный наилучший вариант решения, необходима еще какая-то дополнительная информация, которую может дать только ЛПР.

Метод свёртки критериев

Стандартный приём «борьбы» с многокритериальным выбором это переход к однокритериальной задаче с использованием метода свёртки критериев.

Свёртка критериев означает построение интегрального показателя на основе частных критериев. Интегральный показатель I рассчитывается или как взвешенная сумма частных показателей (выражение (1) - аддитивная форма) или как их произведение (выражение (2) – мультипликативная форма), опять же нормированное на соответствующие веса (важность критериев).

K – частный критерий,

a – вес критерия, причём ,

N – количество критериев,

v - номер критерия.

Использование такого метода как свёртка критериев предполагает, что частные критерии измеряются в абсолютной шкале. Кроме того, критерии должны быть независимы друг от друга. Это означает, что справедливы выражения (3) и (4), то есть отношение предпочтения определяется либо критерием «2» - выражение (3), - либо критерием «1» - выражение (4).

(xi1, xi2) < (xi1,xj2) => (xj1, xi2) < (xj1, xj2) (3)

(xi1, xi2) < (xj1,xi2) => (xi1, xj2) < (xj1, xj2) (4)

Вес критериев, как правило, определяется экспертным методом.

Типичным примером использования метода свёртки критериев является построение интегрального показателя качества продукции.

В литературе встречается утверждение, что мультипликативная и аддитивная формы интегрального показателя эквивалентны. В подтверждение этого ссылаются на взаимную однозначность преобразования интегрального показателя из одной формы в другую, например, с использованием перехода в логарифмическую шкалу и обратно. Следует отметить, что такой переход в общем случае не сохраняет тех же самых отношений предпочтения, то есть может привести к разным выборам. Эквивалентный в смысле сохранения отношения предпочтения переход от мультипликативной формы к аддитивной требует применения весовых коэффициентов, зависящих от значения критерия 2 .

Схемы компромиссов, метод свертывания критериев

Схемы компромиссов смотреть здесь.

Метод свёртывания критериев

Локальные критерии свёртываются в глобальный в соответствии с какой-то функцией.

Линейная аддитивная свёртка:

Линейная мультипликативная свёртка: , где - вес критерия,

Нелинейная свёртка:

Эффективность-стоимость:

После операции свёртки, альтернативы упорядочиваются по значению глобального критерия: .

Основные проблемы применения метода свёртывания критерия:

· Сложно обосновать значения «весов» критериев;

· Недостатки по одним критериям могут компенсироваться большими значениями других критериев;

· Сложно обосновать вид функции свёртки критериев.

ВЫВОДЫ

Для оценки достижения цели организации используется целый ряд показателей – критериев, так как цель хозяйственной системы носит многомерный характер. Каждый из критериев должен быть количественно измерим, определён на одной из шкал измерений.

При принятии управленческих решений могут быть использованы все известные виды шкал: номинальная, ранговая, интервальная и абсолютная.

Важной задачей является построение системы показателей, отражающих генеральную цель ЛПР. В литературе сформулирован целый ряд требований, которые необходимо соблюдать, чтобы использование системы показателей было оправданным. Это требования полноты, действенности, разложимости, неизбыточности и минимальной размерности.

Наиболее распространённым методом решения многокритериальных задач является построение интегральных показателей на основе метода свёртки критериев.

Для использования метода свёртки критериев необходимо измерение значений критериев в абсолютной шкале, а также соблюдение требования независимости критериев.

Лексикографический метод решения многокритериальных задач заключается в последовательном применении упорядоченных по важности критериев.

В случае, когда разнокачественность сравниваемых объектов принципиальна, единственным адекватным подходом является выделение множества Парето.

Множество Парето образует набор таких объектов, что переход от одного к другому обязательно повысит значение хотя бы одного критерия и ухудшит значение минимум одного критерия. Выбор одного из объектов требует дополнительных соображений.

Из презентаций

здесь x – альтернатива из множества Парето

fi (x ) – оценка альтернативы x по i -му критерию

Ci – коэффициенты относительной важности критериев

Использование линейной свертки

Это задачи, связанные с критериями

суммарного ущерба или прибыли ,

дохода ,

денежных или временных затрат

по годам планирования или по этапам

жизненного цикла экономических информационных систем и т. п.,

т.е. там, где допускается, что низкая ценность одной частной характеристики результата компенсируется высокой ценностью другой

Квадратичная свертка

При решении практических задач ЛПР, как правило, ранжирует критерии в соответствии со своими предпочтениями. В этом случае в качестве интегрального критерия используются различные виды сверток

, линейная свертка ,

здесь x – альтернатива из множества W;

f i (x) – оценка альтернативы x по i-му критерию;

с i – весовые коэффициенты, с которыми оценки альтернатив входят в интегральный критерий. с i – коэффициенты значимости, или коэффициенты относительной важности критериев.

Коэффициенты с i можно найти, например, из специально организованной экспертизы: m экспертов должны расставить (ранжировать) критерии по важности:ранг 1 присвоить самому важному критерию и т.д. Пусть r ij – ранг, который присвоил j-ый экперт i-му критерию. Чтобы получить числовую оценку, введем новый коэффициент

.

Тогда коэффициент значимости i-го критерия с точки зрения j-го эксперта:

Обобщенные коэффициенты получим, усреднив оценки экспертов.

Пусть g j – компетентность j-го эксперта, тогда

.

Еще один метод назначения коэффициентов относительной важности основан на внесении предпочтений во множество критериев. Он состоит в следующем.

Пусть удается количественно выразить отношения предпочтения между критериями: критерий f i предпочтительнее критерия f j в h раз: . Тогда коэффициенты относительной важности этих критериев связаны между собой линейным уравнением C i =hC j . Это следует из теоремы:

Th. Если , то C i =hC j , C i >0, åC i =1.

Решая систему линейных уравнений, получим искомые коэффициенты.

Пример. Пусть варианты некоторой системы оцениваются по четырем критериям с пятибалльной шкалой. Значения критериевf i (х) даны в табл.13.

Пусть известно, что , f 2 ~ f 3 , .

Решение . Составим систему линейных уравнений для определения коэффициентов C i :

C 1 =1,5C 2 ; C 2 =C 3 ; C 3 =C 4 ; C 1 +C 2 +C 3 +C 4 =1;

Отсюда следует, что C 1 =3/8; C 2 =2/8; C 3 =2/8; C 4 =1/8.

В табл. 13 приведены значения интегрального критерия «Линейная свертка ».

Таблица 13

Оценки вариантов по критериям

f 1 f 2 f 3 f 4
Х1 Х2 Х3 Х4 Х5 Х6 2 5 4 5 5 3 4 3 3 2 5 5 4 3 4 4 3 4 4 4 4 3 3 4 3/8*2+2/8*5+2/8*4+1/8*5=29/8 32/8 28/8 30/8 29/8 28/8

По этому критерию лучшая альтернатива – Х 2 .

Задачи, в которых выполняются условия для использования линейной свертки, часто встречаются в практике. Это задачи, связанные с критериями суммарного ущерба или прибыли, дохода, денежных или временных затрат по годам планирования или по этапам жизненного цикла экономических информационных систем и т. п., т.е. там, где допускается, что низкая ценность одной частной характеристики результата компенсируется высокой ценностью другой.

Свертка может быть не только линейной , но и квадратичной :

,

сверткой порядка t :

,

Величина t, стоящая в показателе степени, отражает допустимую степень компенсации малых значений одних равноценных критериев большими значениями других. Чем больше значение t, тем больше степень возможной компенсации.

Например, при , т.е. когда недопустима никакая компенсация и требуется выравнивание значений всех критериев (равномерное «подтягивание» значение всех критериев к их наилучшему уровню), интегральный критерий приобретает вид

.

Если t →0, т.е. требуется обеспечение примерно одинаковых уровней значений отдельных частных критериев, то интегральный критерий имеет вид

мультипликативная функция.

При t=1 имеем линейную свертку, при t=2 – квадратичную.

В задачах планирования ударов «по узкому месту» допустима компенсация увеличения одного из критериев сколь угодно большим уменьшением остальных, т.е. , тогда интегральный критерий можно использовать в виде

.

Используя в качестве интегрального критерия свертку, выбирают в качестве лучшей ту альтернативу, для которой F(x) имеет максимальное значение .

Замечание . Входящие в интегральный критерий целевые функции имеют разную размерность и выражены в разных шкалах. Поэтому необходимо предварительно выразить все оценки в одной однородной шкале. Целесообразно использовать для этого следующий прием

,

где f i * (x) оценка альтернативы x по i-му критерию в «родной» шкале, f i max и f i min максимальное и минимальное значения альтернатив по i -му критерию. Полученные оценки принадлежат отрезку и являются дробными, что не всегда удобно для расчетов. Поэтому можно, умножив все оценки по соответствующим критериям на наименьшее общее кратное, перейти в целочисленную шкалу. Сдвиг по шкале на общую для каждого из критериев величину позволит избавиться от отрицательных оценок.


Вариант8,19 Методы решения МКЗ при равнозначных критериях