Оптимальные системы автоматического управления. Определение, особенности и общая характеристика оптимальных систем

Автоматические системы, обеспечивающие наилучшие технические или технико-экономические показатели качества при заданных реальных условиях работы и ограничениях, называются оптимальными системами .
Оптимальные системы делятся на два класса:
- системы с "жесткой" настройкой, в которых неполнота информации не мешает достижению цели управления;
- адаптивные системы, в которых неполнота информации не позволяет достичь цели управления без автоматического приспособления системы в условиях неопределенности.
Цель оптимизации - математически выражается как требование обеспечения минимума или максимума некоторого показателя качества, называемого критерием оптимальности или целевой функцией. Основными критериями качества автоматических систем являются: стоимость разработки, изготовления и эксплуатации системы; качество функционирования (точность и быстродействие); надежность; потребляемая энергия; масса; объем и т.д.

Качество функционирования описывается функциональными зависимостями вида:

где u - координаты управления; x - фазовые координаты; f в - возмущения; t о и t к - начало и конец процесса.
При разработке оптимальных САУ необходимо учитывать ограничения, накладываемые на систему, которые бывают двух типов:
- естественные, обусловленные принципом работы объекта, например, скорость работы гидравлического сервомотора не может быть больше, чем при полностью открытых заслонках, скорость АД не может быть больше синхронной и т.д.;
- искусственные (условные), которые вводят сознательно, например, ограничения тока в ДПТ для нормальной коммутации, нагрева, ускорения для нормального самочувствия в лифте и т.д.
Критерии оптимальности могут быть скалярными, если представляются только одним частным критерием, и векторными (многокритериальными), если представляются рядом частных.
В качестве критерия оптимальности может быть принято время переходного процесса т.е. САУ оптимальная по быстродействию, если обеспечивается минимум этого интеграла с учетом ограничений. Принимаются также известные в ТАУ интегральные оценки качества переходного процесса, например, квадратичный. В качестве критерия оптимальности систем при случайных воздействиях используют среднее значение квадрата ошибки системы При управлении от источников с ограниченной мощностью берут функционал, характеризующий расход энергии на управление где u(t) и i(t) - напряжение и ток цепи управления. Иногда в качестве критерия оптимальности сложных САУ принимают максимум прибыли технологического процесса I= g i П i - S, где g i - цена продукта; П i - производительность; S - затраты.
По сравнению с менее строгими методами проектирования замкнутых САУ преимущества теории оптимизации состоят в следующем:
1). процедура проектирования является более четкой, т.к. включает в едином показателе проектирования все существенные аспекты качества;
2). очевидно проектировщик может ожидать получения наилучшего результата в соответствии с данным показателем качества. Поэтому для рассматриваемой задачи указывается область ограничений;
3). можно обнаружить несовместимость ряда требований качества;
4). процедура непосредственно включает в себя предсказание, т.к. оценка показателя качества производится по будущим значениям времени управления;
5). результирующая система управления будет адаптивной, если в процессе работы показатель проектирования переформулируется и попутно снова вычисляются параметры регулятора;
6). определение оптимальных нестационарных процессов не вносит каких-либо дополнительных трудностей;
7). непосредственно рассматриваются и нелинейные объекты, правда, при этом возрастает сложность вычислений.



Трудности, присущие теории оптимизации, состоят в следующем:
1). превращение различных требований проектирования в значимый на языке математики показатель качества непростая задача; здесь возможны пробы и ошибки;
2). существующие алгоритмы оптимального управления в случае нелинейных систем требуют сложных программ вычислений и, в ряде случаев, большого количества машинного времени;
3). показатель качества результирующей системы управления очень чувствителен к разного рода ошибочным предположениям и к изменениям параметров объекта управления.

Задача оптимизации решается в три этапа:
1). построение математических моделей физического процесса, а также требований качества. Математическая модель требований качества является показателем качества системы;
2). вычисление оптимальных управляющих воздействий;
3). синтез регулятора, формирующего оптимальные сигналы управления.

На рис.10.1 представлена классификация оптимальных систем.

Определение и необходимость построения оптимальных систем автоматического управления

Системы автоматического управления обычно проектируют, исходя из требований обеспечения тех или иных показателей качества. Во многих случаях необходимое повышение динамической точности и улучшение переходных процессов систем автоматического управления достигается с помощью корректирующих устройств.

Особенно широкие возможности повышения показателей качества дает введение в САУ разомкнутых компенсационных каналов и дифференциальных связей, синтезированных из того или иного условия инвариантности ошибки относительно задающего или возмущающих воздействий . Однако эффект влияния корректирующих устройств, разомкнутых компенсационных каналов и эквивалентных им дифференциальных связей на показатели качества САУ зависит от уровня ограничения сигналов нелинейными элементами системы. Выходные сигналы дифференцирующих устройств, обычно кратковременные по длительности и значительные по амплитуде, ограничиваются элементами системы и не приводят к улучшению показателей качества системы, в частности ее быстродействия. Лучшие результаты решения задачи повышения показателей качества САУ при наличии ограничений сигнала дает так называемое оптимальное управление.

Задача синтеза оптимальных систем строго сформулирована сравнительно недавно, когда было дано определение понятия критерия оптимальности. В качестве критерия оптимальности в зависимости от цели управления могут быть выбраны различные технические или экономические показатели управляемого процесса. В оптимальных системах обеспечивается не просто некоторое повышение того или иного технико-экономического показателя качества, а достижение минимально или максимально возможного его значения.

Если критерий оптимальности выражает технико-экономические потери (ошибки системы, время переходного процесса, расход энергии, средств, стоимость и т. п), то оптимальным будет такое управление, которое обеспечивает минимум критерия оптимальности. Если Же он выражает рентабельность (к. п. д., производительность, прибыль, дальность полета ракеты и т. д.), то оптимальное управление должно обеспечить максимум критерия оптимальности.

Задача определения оптимальной САУ, в частности синтез оптимальных параметров системы при поступлении на ее вход задающего

воздействия и помехи, являющихся стационарными случайными сигналами, рассматривалась в гл. 7. Напомним, что в данном случае в качестве критерия оптимальности принято среднеквадратическое значение ошибки (СКО). Условия повышения точности воспроизведения полезного сигнала (задающего воздействия) и подавления помехи носят противоречивый характер, и поэтому возникает задача выбора таких (оптимальных) параметров системы, при которых СКО принимает наименьшее значение.

Синтез оптимальной системы при среднеквадратическом критерии оптимальности является частной задачей. Общие методы синтеза оптимальных систем основываются на вариационном исчислении. Однако классические методы вариационного исчисления для решения современных практических задач, требующих учета ограничений, во многих случаях оказываются непригодными. Наиболее удобными методами синтеза оптимальных систем автоматического управления являются метод динамического программирования Беллмана и принцип максимума Понтрягина.

Таким образом, наряду с проблемой улучшения различных показателей качества САУ возникает задача построения оптимальных систем, в которых достигается экстремальное значение того или иного технико-экономического показателя качества.

Разработка и внедрение оптимальных систем автоматического управления способствует повышению эффективности использования производственных агрегатов, увеличению производительности труда, улучшению качества продукции, экономии электроэнергии, топлива, сырья и т.

Понятия о фазовом состоянии и фазовой траектории объекта

В технике часто возникает задача перевода управляемого объекта (процесса) из одного состояния в другое. Например, при целеуказании необходимо антенну радиолокационной станции повернуть из начального положения с начальным азимутом в заданное положение с азимутом Для этого на электродвигатель, связанный с антенной через редуктор, подают управляющее напряжение и. В каждый момент времени состояние антенны характеризуется текущим значением угла поворота и угловой скоростью Эти две величины изменяются в зависимости от управляющего напряжения и. Таким образом, существуют три связанных между собой параметра и (рис. 11.1).

Величины характеризующие состояние антенны, называются фазовыми координатами, и - управляющим воздействием. При целеуказании РЛС типа станции орудийной наводки возникает задача поворота антенны по азимуту и углу места. В этом случае будем иметь четыре фазовые координаты объекта и два управляющих воздействия. У летящего самолета можно рассматривать шесть фазовых координат (три пространственные координаты и три компоненты скорости ) и несколько управляющих воздействий (тяга двигателя, величины, характеризующие положение рулей

Рис. 11.1. Схема объекта с одним, управляющим воздействием и двумя фазовыми координатами.

Рис. 11.2. Схема объекта с управляющими воздействиями и фазовыми координатами.

Рис. 11.3. Схема объекта с векторным изображением управляющего воздействия и и фазового состояния объекта

высоты и направления, элеронов). В общем случае в каждый момент времени состояние объекта характеризуется фазовыми координатами а к объекту может быть приложено управляющих воздействий (рис. 11.2).

Под переводом управляемого объекта (процесса) из одного состояния в другое следует понимать не только механическое перемещение (например, антенны РЛС, самолета), но также требуемое изменение различных физических величин: температуры, давления, влажности кабины, химического состава того или иного сырья при соответствующем управляемом технологическом процессе.

Управляющие воздействия удобно считать координатами некоторого вектора называемого вектором управляющего воздействия. Фазовые координаты (переменные состояния) объекта также можно рассматривать, как координаты некоторого вектора или точки в -мерном пространстве с координатами Эту точку называют фазовым состоянием (вектором состояния) объекта, а -мерное пространство, в котором в виде точек изображаются фазовые состояния, называется фазовым пространством (пространством состояний) рассматриваемого объекта. При использовании векторных изображений управляемый объект можно изобразить, как показано на рис. 11.3, где и - вектор управляющего воздействия и представляет собой точку в фазовом пространстве, характеризующую фазовое состояние объекта. Под влиянием управляющего воздействия и фазовая точка перемещается, описывая в фазовом пространстве некоторую линию, называемую фазовой траекторией рассматриваемого движения объекта.

В общем случае автоматическая система состоит из объекта управления и совокупности устройств, которые обеспечивают управление этим объектом. Как правило, эта совокупность устройств включает в себя измерительные устройства, усилительные и преобразовательные устройства, а также исполнительные устройства. Если объединить эти устройство в одно звено (управляющее устройство), то структурная схема системы выглядит следующим образом:

В автоматической системе информация о состоянии объекта управления через измерительное устройство поступает на вход управляющего устройства. Такие системы называются системами с обратной связью или замкнутыми системами. Отсутствие этой информации в алгоритме управления говорит о том, что система разомкнута. Состояние объекта управления в любой момент времени будем описывать переменными
, которые называются координатами системы или переменными состояния. Их удобно считать координатами- мерного вектора состояния.

Измерительное устройство выдает информацию о состоянии объекта. Если на основании измерения вектора
могут быть найдены значения всех координат
вектора состояния
, то говорят, что система полностью наблюдаема.

Управляющее устройство вырабатывает управляющее воздействие
. Таких управляющих воздействий может быть несколько, они образуют- мерный управляющий вектор.

На вход управляющего устройства поступает задающее входное воздействие
. Это входное воздействие несет информацию о том, какое должно быть состояние объекта. На объект управления может действовать возмущающее воздействие
, которое представляет собой нагрузку или помеху. Измерение координаты объекта, как правило, осуществляется с некоторыми погрешностями
, которые тоже носят случайный характер.

Задачей управляющего устройства является выработка такого управляющего воздействия
, чтобы качество функционирования автоматической системы в целом было бы наилучшим в некотором смысле.

Мы будем рассматривать такие объекты управления, которые являются управляемыми. То есть вектор состояния можно изменять требуемым образом путем соответствующего изменения вектора управления. Будем подразумевать, что объект полностью наблюдаемый.

Так, например, положение летательного аппарата характеризуется шестью координатами состояния. Это
- координаты центра масс,
- углы Эйлера, определяющие ориентацию летательного аппарата относительно центра масс. Положение летательного аппарата можно изменить с помощью рулей высоты, курса, элерона и с помощью уклонения вектора силы тяги. Таким образом управляющий вектор определен следующим образом:

- угол отклонения рулей высоты

- курс

- элерон

- тяга

Вектор состояния
в этом случае определяется следующим образом:

Можно поставить задачу выбора управления, с помощью которого летательный аппарат переводится из заданного начального состояния
в заданное конечное состояние
с минимальными затратами топлива или за минимальное время.

Дополнительная сложность при решении технических задач возникает в силу того, что на управляющее воздействие и на координаты состояния объекта управления, как правило, накладываются различные ограничения.

На любой угол рулей высоты, курса, элерона существуют ограничения:



- тяга сама по себе ограничена.

На координаты состояния объекта управления и их производные также накладываются ограничения, которые связаны с допустимыми перегрузками.

Мы будем рассматривать объекты управления, которые описываются дифференциальным уравнением:


(1)

Или в векторном виде:

--мерный вектор состояния объекта

--мерный вектор управляющих воздействий

- функция правой части уравнения (1)

На вектор управления
накладывается ограничение, мы будем полагать, что его значения принадлежат некоторой замкнутой областинекоторого-мерного пространства. Это означает, что управляющая функция
в любой момент времени принадлежит области(
).

Так, например, если координаты управляющей функции удовлетворяет неравенствам:


то область является-мерным кубом.

Оптимальное управление

Оптимальное управление - это задача проектирования системы, обеспечивающей для заданного объекта управления или процесса закон управления или управляющую последовательность воздействий, обеспечивающих максимум или минимум заданной совокупности критериев качества системы .

Для решения задачи оптимального управления строится математическая модель управляемого объекта или процесса, описывающая его поведение с течением времени под влиянием управляющих воздействий и собственного текущего состояния. Математическая модель для задачи оптимального управления включает в себя: формулировку цели управления, выраженную через критерий качества управления; определение дифференциальных или разностных уравнений, описывающих возможные способы движения объекта управления; определение ограничений на используемые ресурсы в виде уравнений или неравенств .

Наиболее широко при проектировании систем управления применяются следующие методы: вариационное исчисление , принцип максимума Понтрягина и динамическое программирование Беллмана .

Иногда (например, при управлении сложными объектами, такими как доменная печь в металлургии или при анализе экономической информации) в исходных данных и знаниях об управляемом объекте при постановке задачи оптимального управления содержится неопределённая или нечёткая информация, которая не может быть обработана традиционными количественными методами. В таких случаях можно использовать алгоритмы оптимального управления на основе математической теории нечётких множеств (Нечёткое управление). Используемые понятия и знания преобразуются в нечёткую форму, определяются нечёткие правила вывода принимаемых решений, затем производится обратное преобразование нечётких принятых решений в физические управляющие переменные.

Задача оптимального управления

Сформулируем задачу оптимального управления:

здесь - вектор состояния - управление, - начальный и конечный моменты времени.

Задача оптимального управления заключается в нахождении функций состояния и управления для времени , которые минимизируют функционал.

Вариационное исчисление

Рассмотрим данную задачу оптимального управления как задачу Лагранжа вариационного исчисления . Для нахождения необходимых условий экстремума применим теорему Эйлера-Лагранжа . Функция Лагранжа имеет вид: , где - граничные условия. Лагранжиан имеет вид: , где , , - n-мерные вектора множителей Лагранжа .

Необходимые условия экстремума, согласно этой теореме, имеют вид:

Необходимые условия (3-5) составляют основу для определения оптимальных траекторий. Написав эти уравнения, получаем двухточечную граничную задачу, где часть граничных условий задана в начальный момент времени, а остальная часть - в конечный момент. Методы решения подобных задач подробно разбираются в книге

Принцип максимума Понтрягина

Необходимость в принципе максимума Понтрягина возникает в случае когда нигде в допустимом диапазоне управляющей переменной невозможно удовлетворить необходимому условию (3), а именно .

В этом случае условие (3) заменяется на условие (6):

(6)

В этом случае согласно принципу максимума Понтрягина величина оптимального управления равна величине управления на одном из концов допустимого диапазона. Уравнения Понтрягина записываются при помощи функции Гамильтона Н, определяемой соотношением . Из уравнений следует, что функция Гамильтона H связана с функцией Лагранжа L следующим образом: . Подставляя L из последнего уравнения в уравнения (3-5) получаем необходимые условия, выраженные через функцию Гамильтона:

Необходимые условия, записанные в такой форме, называются уравнениями Понтрягина. Более подробно принцип максимума Понтрягина разобран в книге .

Где применяется

Принцип максимума особенно важен в системах управления с максимальным быстродействием и минимальным расходом энергии, где применяются управления релейного типа, принимающие крайние, а не промежуточные значения на допустимом интервале управления.

История

За разработку теории оптимального управления Л.С. Понтрягину и его сотрудникам В.Г. Болтянскому , Р.В. Гамкрелидзе и Е.Ф. Мищенко в 1962 г была присуждена Ленинская премия .

Метод динамического программирования

Метод динамического программирования основан на принципе оптимальности Беллмана, который формулируется следующим образом: оптимальная стратегия управления обладает тем свойством, что каково бы ни было начальное состояние и управление в начале процесса последующие управления должны составлять оптимальную стратегию управления относительно состояния, полученного после начальной стадии процесса . Более подробно метод динамического программирования изложен в книге

Примечания

Литература

  1. Растригин Л.А. Современные принципы управления сложными объектами. - М.: Сов. радио, 1980. - 232 с., ББК 32.815, тир. 12000 экз.
  2. Алексеев В.М., Тихомиров В.М. , Фомин С.В. Оптимальное управление. - М.: Наука, 1979, УДК 519.6, - 223 c., тир. 24000 экз.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Оптимальное управление" в других словарях:

    Оптимальное управление - ОУ Управление, обеспечивающее наивыгоднейшее значение определенного критерия оптимальности (КО), характеризующего эффективность управления при заданных ограничениях. В качестве КО могут быть выбраны различные технические или экономические… … Словарь-справочник терминов нормативно-технической документации

    оптимальное управление - Управление, цель которого заключается в обеспечении экстремального значения показателя качества управления. [Сборник рекомендуемых терминов. Выпуск 107. Теория управления. Академия наук СССР. Комитет научно технической терминологии. 1984 г.]… … Справочник технического переводчика

    Оптимальное управление - 1. Основное понятие математической теории оптимальных процессов (принадлежащей разделу математики под тем же названием: «О.у.»); означает выбор таких управляющих параметров, которые обеспечивали бы наилучшее с точки… … Экономико-математический словарь

    Позволяет при заданных условиях (часто противоречивых) достичь поставленной цели наилучшим образом, напр. за минимальное время, с наибольшим экономическим эффектом, с максимальной точностью … Большой Энциклопедический словарь

    Летательным аппаратом раздел динамики полёта, посвящённый развитию и использованию методов оптимизации для определения законов управления движением летательного аппарата и его траекторий, обеспечивающих максимум или минимум выбранного критерия… … Энциклопедия техники

    Раздел математики, изучающий неклассические вариационные задачи. Объекты, с которыми имеет дело техника, обычно снабжены «рулями» с их помощью человек управляет движением. Математически поведение такого объекта описывается… … Большая советская энциклопедия

    Позволяет при заданных условиях (часто противоречивых) достичь поставленной цели наилучшим образом, например за минимальное время, с наибольшим экономическим эффектом, с максимальной точностью. * * * ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ … Энциклопедический словарь

ОПТИМАЛЬНЫЕ И АДАПТИВНЫЕ СИСТЕМЫ

(лекции, заочный факультет, 5 курс)

Лекция 1.

Введение.

В классической теории автоматического управления (ТАУ) за­дачи оптимизации и адаптации ставились в основном примени­тельно к управлению «в малом». Это означает, что оптимальная программа изменения режимов технологического процесса, вы­раженная в задающих воздействиях регуляторов, считалась из­вестной, определенной на стадии проектирования. Задача управ­ления заключалась в выполнении этой программы, стабилизации программного движения. При этом допускались лишь малые от­клонения от заданного движения, и переходные процессы «в ма­лом» оптимизировались по тем или иным критериям.

В конце 50-х - начале 60-х гг. XX столетия появились работы Л.С. Понтрягина (принцип максимума), Р. Беллмана (динамичес­кое программирование), Р. Калмана (оптимальная фильтрация, управляемость и наблюдаемость), которые заложили основы со­временной теории автоматического управления, общепринятого определения понятия которой пока не существует.

Наиболее точно современную теорию автоматического управ­ления можно отделить от классической ТАУ, учитывая требования научно-технического прогресса, современной и перспектив­ной автоматизации. Важнейшим из таких требований является оптимальное использование всех располагаемых ресурсов (энер­гетических, информационных, вычислительных) для достижения главной обобщенной конечной цели при соблюдении ограниче­ний.

Прежде всего указанная оптимиза­ция требует полного использования имеющейся априорной ин­формации в виде математической модели управляемого процес­са или объекта. Использование таких моделей не только на стадии проектирования, но и в процессе функционирования систем, яв­ляется одной из характерных черт современной теории автомати­ческого управления.

Оптимальное управление возможно лишь при оптимальной обработке информации. Поэтому теория оптимального (и субоп­тимального) оценивания (фильтрации) динамических процессов является составной частью современной теории автоматического управления. Особо важной является параметрическая идентифи­кация (оценивание параметров и характеристик по эксперимен­тальным данным), выполняемая в реальном масштабе времени в эксплуатационных режимах ОУ.

Подлинная оп­тимизация автоматического управления в условиях неполной априорной информации возможна только в процессе функциони­рования системы в текущей обстановке и возникшей ситуации. Следовательно, современная теория автоматического управления должна рассматривать адаптивное оптимальное (субоптимальное) управление «в большом». Кроме того, современная теория авто­матического управления должна рассматривать методы резерви­рования и структурного обеспечения надежности (особенно прин­ципы автоматической реконфигурации системы при отказах).

Определение, особенности и общая характеристика оптимальных систем.

Оптимальной называется наилучшая в некотором технико-эко­номическом смысле система. Основной ее особенностью являет­ся наличие двух целей управления, которые эти системы реша­ют автоматически.

Основная цель управления - поддержание управляемой ве­личины на заданном значении и устранение возникающих откло­нений этой величины.

Цель оптимизации - обеспечение наилучшего качества уп­равления, определяемое по достижению экстремума некоторого технико-экономического показателя, называемого критерием оптимальности (КО).

Оптимальные системы разделяют в зависимости от вида КО на два класса: оптимальные в статике системы и оптимальные в ди­намике системы.

У оптимальных в статике систем КО является функцией пара­метров или управляющих воздействий. Этот критерий имеет экст­ремум в статическом режиме работы системы, причем статическая характеристика, выражающая зависимость КО от управляющих воздействий оптимизации, может непредвиденным образом сме­щаться под действием возмущений. Оптимальная система должна этот экстремум находить и поддерживать. Такие системы приме­нимы, если возмущения, смещающие указанную характеристи­ку, изменяются сравнительно медленно по сравнению с длитель­ностью переходных процессов в системе. Тогда система будет успевать отслеживать экстремум практически в статическом ре­жиме. Такие условия обычно выполняются на верхней ступени иерархии управления.

Оптимальные в динамике системы отличаются тем, что их критерий оптимальности представляет собой функционал, т. е. функцию от функций времени. Это значит, что, задав функции времени, от которых данный функционал зависит, получим чис­ловое значение функционала. Эти системы могут применяться при сравнительно быстро меняющихся внешних воздействиях, не выходящих, однако, за допустимые пределы. Поэтому они ис­пользуются на нижних уровнях управления.

1.2. Критерии оптимальности оптимальных в динамике систем

Обычно эти функционалы имеют вид определенных интегра­лов по времени

где x(t), u(t) - векторы состояния и управления данной системы;

Т - длительность процесса (в частности, может быть Т = ).

В зависимости от подынтегральной функции f 0 эти критерии имеют следующие основные виды.

1. Линейные функционалы, у которых f 0 - линейная функция переменных:

Критерий максимального быстродействия при f 0 1, т.е.

который равен длительности процесса, а соответствующие системы называют оптимальными по быстродействию;

Линейные интегральные оценки

Критерий максимальной производительности

,

где q(t) - количество произведенной продукции.

2. Квадратичные функционалы, у которых f 0 - квадратичная форма от входящих в нее переменных:

Квадратичные интегральные оценки качества переходного процесса

;

Критерий энергозатрат на управление, у которого

,

где u - управляющее воздействие, а и 2 - мощность, затрачи­ваемая на управление;

Обобщенный квадратичный критерий, равный сумме двух предшествующих, взятых с некоторыми весовыми коэффи­циентами. Он компромиссно характеризует качество пере­ходного процесса и энергозатраты на него, т. е.

,

где Q и R - положительно определенные квадратные матрицы. Функционалы, не содержащие интегралов:

Критерий минимакса, при оптимизации по которому надо обеспечить минимальное значение максимума модуля (нор­мы) вектора отклонения управляемого процесса от его эта­лонного закона изменения, т. е.

, где x э – эталонный закон изменения.

Простейшим примером этого критерия для скалярного случая является известное максимальное перерегулирова­ние переходного процесса;

Функция от конечного состояния

которая является функционалом потому, что конечное со­стояние объекта х (Т) является функцией от управляющего воздействия u (t). Этот критерий оптимальности может применяться в сумме с одним из рассмотренных выше критериев, имеющих вид определенного интеграла.

Выбор того или иного критерия оптимальности для конкретного объекта или системы производится на основании соответствующего изучения работы объекта и предъявляемых к нему требований технико-экономического характера. Этот вопрос не может быть решен в рамках только теории автоматического управления. В зависимости от физического смысла критерия оптимальности его требуется либо минимизировать, либо максимизировать. В первом случае он выражает потери, во втором случае технико-экономическую выгоду. Формально, поменяв знак перед функционалом, можно задачу по максимизации свести к задаче по минимизации.

Лекция 2.

1.3. Краевые условия и ограничения
для оптимальных в динамике систем

Основная цель управления в таких системах обычно формулируется как задача перевода изображающей точки из некоторого начального состояния х(О) в некоторое конечное х(Т) состояние. Начальное состояние принято называть левым концом оптимальной траектории, а конечное - правым. Вместе взятые эти данные и образуют краевые условия. Задачи управления могут отличаться видом краевых условий.

1. Задача с закрепленными концами траектории имеет место, когда х (0) и х (Т) фиксированные точки пространства.

2. Задача с подвижными концами траектории получается, когда х (0) и х (Т) принадлежат некоторым известным линиям или поверхностям пространства.

3. Задача со свободными концами траектории возникает, когда указанные точки занимают произвольные положения. На практике встречаются и смешанные задачи, например х (0) - фиксирован, а х (Т) подвижен. Такая задача будет иметь место, если объект из заданного фиксированного состояния должен «догнать» некоторую эталонную траекторию (рис. 1).

Ограничениями называются дополнительные условия, кото­рым должны удовлетворять управляющие воздействия и управ­ляемые величины. Встречаются два вида ограничений.

1. Безусловные (естественные) ограничения, которые выпол­няются в силу физических законов для процессов в объекте уп­равления (ОУ). Эти ограничения показывают, что некоторые ве­личины и их функции не могут выйти за границы, определяемые равенствами или неравенствами. Например, уравнение двигате­ля постоянного тока (ДПТ):

,

ограничение на скорость асинхронного двигателя , где - синхронная скорость.

2. Условные (искусственные) ограничения, выражающие та­кие требования к величинам или функциям от них, согласно ко­торым они не должны превосходить границ, определенных равен­ствами или неравенствами по условиям долговечной и безопасной эксплуатации объектов. Например, ограничение на питающее напряжение , ограничения на допустимую скорость, уско­рение и т. п.

Для обеспечения условных ограничений необходимо прини­мать меры схемного или программного характера при реализации соответствующего управляющего устройства.

Ограничения, независимо от их вида, выражаемые равенства­ми, называются классическими, а неравенствами - неклассичес­кими.


Похожая информация.