Способы изменения внутренней энергии — Гипермаркет знаний. Внутренняя энергия и способы ее изменения

Как изменить механическую энергию тела? Да очень просто. Поменять его местоположение или придать ему ускорение. Например, пнуть мячик или поднять его над землей повыше.

В первом случае мы изменим его кинетическую энергию, во втором потенциальную. А как обстоит дело с внутренней энергией? Каким способом изменить внутреннюю энергию тела? Для начала разберемся, что же это такое. Внутренняя энергия - это кинетическая и потенциальная энергия всех частиц, из которых состоит тело. В частности, кинетическая энергия частиц - это энергия их движения. А скорость их движения, как известно, зависит от температуры. То есть, логичный вывод - повышая температуру тела, мы повысим его внутреннюю энергию. Самый простой способ повысить температуру тела - это теплообмен. При контакте тел с разной температурой более холодное тело нагревается за счет более теплого. Более теплое тело в этом случае охлаждается.

Простой ежедневный пример: холодная ложка в чашке с горячим чаем очень быстро нагревается, а чай при этом чуть-чуть остывает. Повышение температуры тела возможно и другими способами. Как мы все поступаем, когда у нас на улице замерзают лицо или руки? Мы трем их. При трении предметы нагреваются. Также предметы нагреваются при ударах, давлении, то есть, иными словами, при взаимодействии. Всем известно, как добывали огонь в древности - либо терли деревяшки друг о друга, либо стукали кремнием по другому камню. Также и в наше время в кремниевых зажигалках используется трение металлического стержня о кремень.

До сих пор речь шла о изменении внутренней энергии путем изменения кинетической энергии составляющих его частиц. А как насчет потенциальной энергии этих же самых частиц? Как известно, потенциальная энергия частиц - это энергия их взаиморасположения. Таким образом, для изменения потенциальной энергии частиц тела, нам надо тело деформировать: сжать, скрутить и так далее, то есть, изменить расположение частиц друг относительно друга. Это достигается путем воздействия на тело. Мы меняем скорость отдельных частей тела, то есть совершаем над ним работу.

Примеры изменения внутренней энергии

Таким образом, все случаи воздействия на тело с целью изменения его внутренней энергии достигаются двумя способами. Либо путем передачи ему тепла, то есть теплопередачей, либо путем изменения скорости его частиц, то есть совершением над телом работы.

Примеры изменения внутренней энергии - это практически все происходящие в мире процессы. Не меняется внутренняя энергия частиц в случае, когда с телом абсолютно ничего не происходит, что согласитесь, крайняя редкость - закон сохранения энергии действует. Вокруг нас все время что-то происходит. Даже с предметами, с которыми на первый взгляд ничего не происходит, на самом деле происходят различные незаметные нам изменения: незначительные изменения температуры, небольшие деформации и так далее. Стул прогибается под нашей тяжестью, у книги на полке чуть-чуть изменяется температуру от каждого движения воздуха, не говоря уже про сквозняки. Ну а что касается живых тел - тут понятно без слов, что в них внутри все время что-то происходит, и внутренняя энергия меняется практически в каждый момент времени.

1. Существуют два вида механической энергии: кинетическая и потенциальная. Кинетической энергией обладает любое движущееся тело; она прямо пропорциональна массе тела и квадрату его скорости. Потенциальной энергией обладают взаимодействующие между собой тела. Потенциальная энергия тела, взаимодействующего с Землёй, прямо пропорциональна его массе и расстоянию между
ним и поверхностью Земли.

Сумма кинетической и потенциальной энергии тела называется его полной механической энергией . Таким образом, полная механическая энергия зависит от скорости движения тела и от его положения относительно того тела, с которым оно взаимодействует.

Если тело обладает энергией, то оно может совершить работу. При совершении работы энергия тела изменяется. Значение работы равно изменению энергии .

2. Если в закрытую пробкой толстостенную банку, дно которой покрыто водой, накачивать воздух (рис. 67), то через какое-то время пробка из банки вылетит и в банке образуется туман.

Это объясняется тем, что в воздухе, находящемся в банке, присутствует водяной пар, образующийся при испарении воды. Появление тумана означает, что пар превратился в воду, т.е. сконденсировался, а это может происходить при понижении температуры. Следовательно, температура воздуха в банке понизилась.

Причина этого следующая. Пробка вылетела из банки, потому что находившийся там воздух действовал на неё с определённой силой. Воздух при вылете пробки совершил работу. Известно, что работу тело может совершить, если оно обладает энергией. Следовательно, воздух в банке обладает энергией.

При совершении воздухом работы понизилась его температура, изменилось его состояние. При этом механическая энергия воздуха не изменилась: не изменились ни его скорость, ни его положение относительно Земли. Следовательно, работа была совершена не за счёт механической, а за счёт другой энергии. Эта энергия - внутренняя энергия воздуха, находящегося в банке.

3. Внутренней энергией тела называют сумму кинетической энергии движения его молекул и потенциальной энергии их взаимодействия.

Кинетической энергией ​\((E_к) \) ​ молекулы обладают, так как они находятся в движении, а потенциальной энергией \((E_п) \) , поскольку они взаимодействуют.

Внутреннюю энергию обозначают буквой ​\(U \) ​. Единицей внутренней энергии является 1 джоуль (1 Дж).

\[ U=E_к+E_п \]

4. Чем больше скорости движения молекул, тем выше температура тела, следовательно, внутренняя энергия зависит от температуры тела . Чтобы перевести вещество из твёрдого состояния в жидкое состояние, например, превратить лёд в воду, нужно подвести к нему энергию. Следовательно, вода будет обладать большей внутренней энергией, чем лёд той же массы, и, следовательно, внутренняя энергия зависит от агрегатного состояния тела .

Внутренняя энергия тела не зависит от его движения как целого и от его взаимодействия с другими телами. Так, внутренняя энергия мяча, лежащего на столе и на полу, одинакова, так же как и мяча, неподвижного и катящегося по полу (если, конечно, пренебречь сопротивлением его движению).

Об изменении внутренней энергии можно судить по значению совершённой работы. Кроме того, поскольку внутренняя энергия тела зависит от его температуры, то по изменению температуры тела можно судить об изменении его внутренней энергии.

5. Внутреннюю энергию можно изменить при совершении работы. Так, в описанном опыте внутренняя энергия воздуха и паров воды в банке уменьшалась при совершении ими работы по выталкиванию пробки. Температура воздуха и паров воды при этом понижалась, о чём свидетельствовало появление тумана.

Если по куску свинца несколько раз ударить молотком, то даже на ощупь можно определить, что кусок свинца нагреется. Следовательно, его внутренняя энергия, так же как и внутренняя энергия молотка, увеличилась. Это произошло потому, что была совершена работа над куском свинца.

Если тело само совершает работу, то его внутренняя энергия уменьшается, а если над ним совершают работу, то его внутренняя энергия увеличивается.

Если в стакан с холодной водой налить горячую воду, то температура горячей воды понизится, а холодной воды - повысится. В этом случае работа не совершается, однако внутренняя энергия горячей воды уменьшается, о чем и свидетельствует понижение её температуры.

Поскольку вначале температура горячей воды была выше температуры холодной воды, то и внутренняя энергия горячей воды больше. А это значит, что молекулы горячей воды обладают большей кинетической энергией, чем молекулы холодной воды. Эту энергию молекулы горячей воды передают молекулам холодной воды при столкновениях, и кинетическая энергия молекул холодной воды увеличивается. Кинетическая энергия молекул горячей воды при этом уменьшается.

В рассмотренном примере механическая работа не совершается, внутренняя энергия тел изменяется путём теплопередачи .

Теплопередачей называется способ изменения внутренней энергии тела при передаче энергии от одной части тела к другой или от одного тела к другому без совершения работы.

Часть 1

1. Внутренняя энергия газа в запаянном сосуде постоянного объёма определяется

1) хаотическим движением молекул газа
2) движением всего сосуда с газом
3) взаимодействием сосуда с газом и Земли
4) действием на сосуд с газом внешних сил

2. Внутренняя энергия тела зависит от

A) массы тела
Б) положения тела относительно поверхности Земли
B) скорости движения тела (при отсутствии трения)

Правильный ответ

1) только А
2) только Б
3) только В
4) только Б и В

3. Внутренняя энергия тела не зависит от

A) температуры тела
Б) массы тела
B) положения тела относительно поверхности Земли

Правильный ответ

1) только А
2) только Б
3) только В
4) только А и Б

4. Как изменяется внутренняя энергия тела при его нагревании?

1) увеличивается
2) уменьшается
3) у газов увеличивается, у твёрдых и жидких тел не изменяется
4) у газов не изменяется, у твёрдых и жидких тел увеличивается

5. Внутренняя энергия монеты увеличивается, если её

1) нагреть в горячей воде
2) опустить в воду такой же температуры
3) заставить двигаться с некоторой скоростью
4) поднять над поверхностью Земли

6. Один стакан с водой стоит на столе в комнате, а другой стакан с водой такой же массы и такой же температуры находится на полке, висящей на высоте 80 см относительно стола. Внутренняя энергия стакана с водой на столе равна

1) внутренней энергии воды на полке
2) больше внутренней энергии воды на полке
3) меньше внутренней энергии воды на полке
4) равна нулю

7. После того как горячую деталь опустят в холодную воду, внутренняя энергия

1) и детали, и воды будет увеличиваться
2) и детали, и воды будет уменьшаться
3) детали будет уменьшаться, а воды увеличиваться
4) детали будет увеличиваться, а воды уменьшаться

8. Один стакан с водой стоит на столе в комнате, а другой стакан с водой такой же массы и такой же температуры находится в самолете, летящем со скоростью 800 км/ч. Внутренняя энергия воды в самолёте

1) равна внутренней энергии воды в комнате
2) больше внутренней энергии воды в комнате
3) меньше внутренней энергии воды в комнате
4) равна нулю

9. После того как в чашку, стоящую на столе, налили горячую воду, внутренняя энергия

1) чашки и воды увеличилась
2) чашки и воды уменьшилась
3) чашки уменьшилась, а воды увеличилась
4) чашки увеличилась, а воды уменьшилась

10. Температуру тела можно повысить, если

А. Совершить над ним работу.
Б. Сообщить ему некоторое количество теплоты.

Правильный ответ

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

11. Свинцовый шарик охлаждают в холодильнике. Как при этом меняются внутренняя энергия шарика, его масса и плотность вещества шарика? Для каждой физической величины определите соответствующий характер изменения. Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) внутренняя энергия
Б) масса
B) плотность

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличивается
2) уменьшается
3) не изменяется

12. В бутыль, плотно закрытую пробкой, закачивают насосом воздух. В какой-то момент пробка вылетает из бутыли. Что при этом происходит с объёмом воздуха, его внутренней энергией и температурой? Для каждой физической величины определите характер её изменения. Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) объём
Б) внутренняя энергия
B) температура

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличивается
2) уменьшается
3) не изменяется

Ответы

Внутренняя энергия тела не является какой-то постоянной величиной. У одного и того же тела она может изменяться.

При повышении температуры внутренняя энергия тела увеличивается , так как увеличивается средняя скорость движения молекул.

Следовательно, возрастает кинетическая энергия молекул этого тела. С понижением температуры, наоборот, внутренняя энергия тела уменьшается .

Таким образом, внутренняя энергия тела меняется при изменении скорости движения молекул .

Попытаемся выяснить, каким способом можно увеличить или уменьшить скорость движения молекул. Для этого проделаем следующий опыт. Укрепим тонкостенную латунную трубку на подставке (рис. 3). Нальём в трубку немного эфира и закроем пробкой. Затем трубку обовьём верёвкой и начнём быстро двигать её то в одну сторону, то в другую. Через некоторое время эфир закипит, и пар вытолкнет пробку. Опыт показывает, что внутренняя энергия эфира увеличилась: ведь он нагрелся и даже закипел.

Рис. 3. Увеличение внутренней энергии тела при совершении работы над ним

Увеличение внутренней энергии произошло в результате совершения работы при натирании трубки верёвкой.

Нагревание тел происходит также при ударах, разгибании и сгибании, т. е. при деформации. Внутренняя энергия тела во всех приведённых примерах увеличивается.

Следовательно, внутреннюю энергию тела можно увеличить, совершая над телом работу .

Если же работу совершает само тело, то его внутренняя, энергия уменьшается .

Проделаем следующий опыт.

В толстостенный стеклянный сосуд, закрытый пробкой, накачаем воздух через специальное отверстие в ней (рис. 4).

Рис. 4. Уменьшение внутренней энергии тела при совершении работы самим телом

Через некоторое время пробка выскочит из сосуда. В момент, когда пробка выскакивает из сосуда, образуется туман. Его появление означает, что воздух в сосуде стал холоднее. Находящийся в сосуде сжатый воздух, выталкивая пробку, совершает работу. Эту работу он совершает за счёт своей внутренней энергии, которая при этом уменьшается. Судить об уменьшении внутренней энергии можно по охлаждению воздуха в сосуде. Итак, внутреннюю энергию тела можно изменить путём совершения работы .

Внутреннюю энергию тела можно изменить и другим способом, без совершения работы. Например, вода в чайнике, поставленном на плиту, закипает. Воздух и различные предметы в комнате нагреваются от радиатора центрального отопления, крыши домов нагреваются лучами солнца и т. п. Во всех этих случаях повышается температура тел, а значит, увеличивается их внутренняя энергия. Но при этом работа не совершается.

Значит, изменение внутренней энергии может происходить не только в результате совершения работы .

Как можно объяснить увеличение внутренней энергии в этих случаях?

Рассмотрим следующий пример.

Опустим в стакан с горячей водой металлическую спицу. Кинетическая энергия молекул горячей воды больше кинетической энергии частиц холодного металла. Молекулы горячей воды при взаимодействии с частицами холодного металла будут передавать им часть своей кинетической энергии. В результате этого энергия молекул воды в среднем будет уменьшаться, а энергия частиц металла будет увеличиваться. Температура воды уменьшится, а температура металлической спицы постепенно увеличится. Через некоторое время их температуры выравняются. Этот опыт демонстрирует изменение внутренней энергии тел.

Итак, внутреннюю энергию тел можно изменить путём теплопередачи .

    Процесс изменения внутренней энергии без совершения работы над телом или самим телом называется теплопередачей.

Теплопередача всегда происходит в определённом направлении: от тел с более высокой температурой к телам с более низкой.

Когда температуры тел выравняются, теплопередача прекращается.

Внутреннюю энергию тела можно изменить двумя способами: совершая механическую работу или теплопередачей.

Теплопередача, в свою очередь, может осуществляться: 1) теплопроводностью; 2) конвекцией; 3) излучением .

Вопросы

  1. Пользуясь рисунком 3, расскажите, как изменяется внутренняя энергия тела, когда над ним совершают работу.
  2. Опишите опыт, показывающий, что за счёт внутренней энергии тело может совершить работу.
  3. Приведите примеры изменения внутренней энергии тела способом теплопередачи.
  4. Объясните на основе молекулярного строения вещества нагревание спицы, опущенной в горячую воду.
  5. Что такое теплопередача?
  6. Какими двумя способами можно изменить внутреннюю энергию тела?

Упражнение 2

  1. Сила трения совершает над телом работу. Меняется ли при этом внутренняя энергия тела? По каким признакам можно судить об этом?
  2. При быстром спуске по канату нагреваются руки. Объясните, почему это происходит.

Задание

Положите монету на лист фанеры или деревянную доску. Прижмите монету к доске и двигайте её быстро то в одну, то в другую сторону. Заметьте, сколько раз надо передвинуть монету, чтобы она стала тёплой, горячей. Сделайте вывод о связи между выполненной работой и увеличением внутренней энергии тела.

Внутреннюю энергию можно изменить двумя способами.

Если работа совершается над телом, его внутренняя энергия увеличивается.

Вну́тренняя эне́ргия тела (обозначается как E или U) - это сумма энергий молекулярных взаимодействий и тепловых движений молекулы. Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности между ее значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход.

Внутреннюю энергию тела нельзя измерить напрямую. Можно определить только изменение внутренней энергии:

Эта формула является математическим выражением первого начала термодинамики

Для квазистатических процессов выполняется следующее соотношение:

Температура, измеренная в кельвинах

Энтропия, измеренная в джоулях/кельвин

Давление, измеренное в паскалях

Химический потенциал

Количество частиц в систем

Теплота сгорания топлива. Условное топливо. Количество воздуха необходимое для горения топлива.

О качестве топлива судят по его теплоте сгорания. Для характеристики твердых и жидких видов топлива служит показатель удельной теплоты сгорания, который представляет собой количество теплоты, выделяемое при полном сгорании единицы массы (кДж/кг). Для газообразных видов топлива применяется показатель объемной теплоты сгорания, представляющий собой количество теплоты выделяемое при сгорании единицы объема (кДж/м3). Кроме того, газообразное топливо в ряде случаев оценивают по количеству теплоты, выделяемой при полном сгорании одного моля газ (кДж/моль).

Теплоту сгорания определяют не только теоретически, но и опытным путем, сжигая определенное количество топлива в специальных приборах, называемых калориметрами. Теплоту сгорания оценивают по повышению температуры воды в колориметре. Результаты, полученные этим методом, близки к значениям, рассчитанным по элементарному составу топлива.

Вопрос 14 Изменение внутренней энергии при нагревании и охлаждении. Работа газа при изменении обьема.

Внутренняя энергия тела зависит от средней кинетической энергии его молекул, а эта энергия, в свою очередь, зависит от температуры. Поэтому, изменяя температуру тела, мы изменяем и его внутреннюю энергию.При нагревании тела его внутренняя энергия увеличивается, при охлаждении уменьшается.

Внутреннюю энергию тела можно изменить и без совершения работы. Так, например, ее можно увеличить, нагрев на плите чайник с водой или опустив ложку в стакан с горячим чаем. Нагревается камин, в котором разведен огонь, крыша дома, освещаемая солнцем, и т. д. Повышение температуры тел во всех этих случаях означает увеличение их внутренней энергии, но это увеличение происходит без совершения работы.

Изменение внутренней энергии тела без совершения работы называется теплообменом. Теплообмен возникает между телами (или частями одного и того же тела), имеющими разную температуру.

Как, например, происходит теплообмен при контакте холодной ложки с горячей водой? Сначала средняя скорость и кинетическая энергия молекул горячей воды превышают среднюю скорость и кинетическую энергию частиц металла, из которого изготовлена ложка. Но в тех местах, где ложка соприкасается с водой, молекулы горячей воды начинают передавать часть своей кинетической энергии частицам ложки, и те начинают двигаться быстрее. Кинетическая энергия молекул воды при этом уменьшается, а кинетическая энергия частиц ложки увеличивается. Вместе с энергией изменяется и температура: вода постепенно остывает, а ложка нагревается. Изменение их температуры происходит до тех пор, пока она и у воды, и у ложки не станет одинаковой.

Часть внутренней энергии, переданной от одного тела к другому при теплообмене, обозначают буквой и называютколичеством теплоты.

Q - количество теплоты.

Количество теплоты не следует путать с температурой. Температура измеряется в градусах, а количество теплоты (как и любая другая энергия) - в джоулях.

При контакте тел с разной температурой более горячее тело отдает некоторое количество теплоты, а более холодное тело его получает.

Работа при изобарном расширении газа. Одним из основных термодинамических процессов, совершающихся в большинстве тепловых машин, является процесс расширения газа с совершением работы. Легко определить работу, совершаемую при изобарном расширении газа.

Если при изобарном расширении газа от объема V1 до объема V2 происходит перемещение поршня в цилиндре на расстояние l (рис. 106), то работа A", совершенная газом, равна

Где p - давление газа, - изменение его объема.

Работа при произвольном процессе расширения газа. Произвольный процесс расширения газа от объема V1 до объема V2 можно представить как совокупность чередующихся изобарных и изохорных процессов.

Работа при изотермическом расширении газа . Сравнивая площади фигур под участками изотермы и изобары, можно сделать вывод, что расширение газа от объема V1 до объема V2 при одинаковом начальном значении давления газа сопровождается в случае изобарного расширения совершением большей работы.

Работа при сжатии газа. При расширении газа направление вектора силы давления газа совпадает с направлением вектора перемещения, поэтому работа A", совершенная газом, положительна (A" > 0), а работа А внешних сил отрицательна: A = -A" < 0.

При сжатии газа направление вектора внешней силы совпадает с направлением перемещения, поэтому работа А внешних сил положительна (A > 0), а работа A", совершенная газом, отрицательна (A" < 0).

Адиабатный процесс . Кроме изобарного, изохорного и изотермического процессов, в термодинамике часто рассматриваются адиабатные процессы.

Адиабатным процессом называется процесс, происходящий в термодинамической системе при отсутствии теплообмена с окружающими телами, т. е. при условии Q = 0.

Вопрос 15 Условия равновесия тела. Момент силы. Виды равновесия.

Равновесие, или баланс, некоторого числа связанных явлений в естественных и гуманитарных науках.

Система считается находящейся в положении равновесия, если все воздействия на эту систему компенсируются другими или отсутствуют вообще. Сходное понятие - устойчивость. Равновесие может быть устойчивым, неустойчивым или безразличным.

Характерные примеры равновесия:

1. Механическое равновесие, также известно как статическое равновесие, - состояние тела, находящегося в покое, или движущегося равномерно, в котором сумма сил и моментов, действующих на него, равна нулю.

2. Химическое равновесие - положение, в котором химическая реакция протекает в той же степени, как и обратная реакция, и в результате не происходит изменения количества каждого компонента.

3. Физический баланс людей и животных, который поддерживается за счёт понимания его необходимости и в некоторых случаях - при помощи искусственного поддержания этого баланса[источник не указан 948 дней].

4. Термодинамическое равновесие - состояние системы, в котором его внутренние процессы не приводят к изменениям макроскопических параметров (таких, как температура и давление).

Р авенство нулю алгебраической суммы моментов сил не означает также, что при этом тело обязательно находится в покое. На протяжении нескольких миллиардов лет с постоянным периодом продолжается вращение Земли вокруг оси именно потому, что алгебраическая сумма моментов сил, действующих на Землю со стороны других тел, очень мала. По той же причине продолжает вращение с постоянной частотой раскрученное велосипедное колесо, и только внешние силы останавливают это вращение.

Виды равновесия . В практике большую роль играет не только выполнение условия равновесия тел, но и качественная характеристика равновесия, называемая устойчивостью. Различают три вида равновесия тел: устойчивое, неустойчивое и безразличное. Равновесие называется устойчивым, если после небольших внешних воздействий тело возвращается в исходное состояние равновесия. Это происходит, если при небольшом смещении тела в любом направлении от первоначального положения равнодействующая сил, действующих на тело, становится отличной от нуля и направлена к положению равновесия. В устойчивом равновесии находится, например, шар на дне углубления.

Общее условие равновесия тела . Объединяя два вывода, можно сформулировать общее условие равновесия тела: тело находится в равновесии, если равны нулю геометрическая сумма векторов всех приложенных к нему сил и алгебраическая сумма моментов этих сил относительно оси вращения.

Вопрос 16 Парообразование и конденсация. Испарение. Кипение жидкости. Зависимость кипения жидкости от давления.

Парообразование - свойство капельных жидкостей изменять свое агрегатное состояние и превращаться в пар. Парообразование, происходящее лишь на поверхности капельной жидкости, называется испарением. Парообразование по всему объему жидкости называется кипением; оно происходит при определенной температуре, зависящей от давления. Давление, при котором жидкость закипает при данной температуре, называется давлением насыщенных паров pнп, его значение зависит от рода жидкости и ее температуры.

Испаре́ние - процесс перехода вещества из жидкого состояния в газообразное (пар). Процесс испарения является обратным процессу конденсации (переход из парообразного состояния в жидкое. Испарение(парообразование), переход вещества из конденсированной (твердой или жидкой) фазы в газообразную (пар); фазовый переход первого рода.

Конденсация – это процесс, обратный процессу испарения. При конденсации молекулы пара возвращаются в жидкость. В закрытом сосуде жидкость и ее пар могут находиться в состоянии динамического равновесия, когда число молекул, вылетающих из жидкости, равно числу молекул, возвращающихся в жидкость из пара, то есть когда скорости процессов испарения и конденсации одинаковы. Такую систему называют двухфазной. Пар, находящийся в равновесии со своей жидкостью, называют насыщенным. Число молекул, вылетающих с единицы площади поверхности жидкости за одну секунду, зависит от температуры жидкости. Число молекул, возвращающихся из пара в жидкость, зависит от концентрации молекул пара и от средней скорости их теплового движения, которая определяется температурой пара.

Кипе́ние - процесс парообразования в жидкости (переход вещества из жидкого в газообразное состояние), с возникновением границ разделения фаз. Температура кипения при атмосферном давлении приводится обычно как одна из основных физико-химических характеристик химически чистого вещества.

Кипение различают по типу:

1. кипение при свободной конвекции в большом объеме;

2. кипение при вынужденной конвекции;

3. а так же по отношению средней температуры жидкости к температуре насыщения:

4. кипение жидкости, недогретой до температуры насыщения (поверхностное кипение);

5. кипение жидкости, догретой до температуры насыщения

Пузырьковый

Кипение, при котором пар образуется в виде периодическизарождающихся и растущих пузырей, называется пузырьковым кипением. При медленном пузырьковом кипении в жидкости (а точнее, как правило на стенках или на дне сосуда) появляются пузырьки, наполненные паром. За счёт интенсивного испарения жидкости внутрь пузырьков, они растут, всплывают, и пар высвобождается в паровую фазу над жидкостью. При этом в пристеночном слое жидкость находится в слегка перегретом состоянии, т. е. её температура превышает номинальную температуру кипения. В обычных условиях эта разница невелика (порядка одного градуса).

Плёночный

При увеличении теплового потока до некоторой критической величины отдельные пузырьки сливаются, образуя у стенки сосуда сплошной паровой слой, периодически прорывающийся в объём жидкости. Такой режим называется плёночным.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20

Внутреннюю энергию можно изменить двумя способами.

Если работа совершается над телом, его внутренняя энергия увеличивается.


Если работу совершает само тело, его внутренняя энергия уменьшается.

Всего существует три простых (элементарных) вида передачи тепла:

· Теплопроводность

· Конвекция

Конвекция — явление переноса теплоты в жидкостях или газах, или сыпучих средах потоками вещества. Существует т. н. естественная конвекция , которая возникает в веществе самопроизвольно при его неравномерном нагревании в поле тяготения. При такой конвекции нижние слои вещества нагреваются, становятся легче и всплывают, а верхние слои, наоборот, остывают, становятся тяжелее и опускаются вниз, после чего процесс повторяется снова и снова.

Тепловое излучение или лучеиспускание — передача энергии от одних тел к другим в виде электромагнитных волн за счёт их тепловой энергии.

Внутренняя энергия идеального газа

Исходя из определения идеального газа , в нем отсутствует потенциальная составляющая внутренней энергии (отсутствуют силы взаимодействия молекул, кроме ударного). Таким образом, внутренняя энергия идеального газа представляет собой только кинетическую энергию движения его молекул. Ранее (уравнение 2.10) было показано, что кинетическая энергия поступательного движения молекул газа прямо пропорциональна его абсолютной температуре.

Используя выражение универсальной газовой постоянной (4.6), можно определить величину константы α.

Таким образом, кинетическая энергия поступательного движения одной молекулы идеального газа будет определяться выражением.

В соответствии с кинетической теорией, распределение энергии по степеням свободы равномерное. У поступательного движения 3 степени свободы. Следовательно, на одну степень свободы движения молекулы газа будет приходиться 1/3 ее кинетической энергии.

Для двух, трех и многоатомных молекул газа кроме степеней свободы поступательного движения есть степени свободы вращательного движения молекулы. Для двухатомных молекул газа число степеней свободы вращательного движения равно 2, для трех и многоатомных молекул - 3.

Поскольку распределение энергии движения молекулы по всем степеням свободы равномерное, а число молекул в одном киломоле газа равняется Nμ, внутреннюю энергию одного киломоля идеального газа можно получить, умножив выражение (4.11) на число молекул в одном киломоле и на число степеней свободы движения молекулы данного газа.


где Uμ - внутренняя энергия киломоля газа в Дж/кмоль, i - число степеней свободы движения молекулы газа.

Для 1 - атомного газа i = 3, для 2 - атомного газа i = 5, для 3 - атомного и многоатомного газов i = 6.

Электрический ток. Условия существования электрического тока. ЭДС. Закон Ома для полной цепи. Работа и мощность тока. Закон Джоуля-Ленца.

Среди условий, необходимых для существования электрического тока различают: наличие в среде свободных электрических зарядов и создание в среде электрического поля . Электрическое поле в среде необходимо для создания направленного движения свободных зарядов. Как известно, на заряд q в электрическом поле напряженностью E действует сила F = qE, которая и заставляет свободные заряды двигаться в направлении электрического поля. Признаком существования в проводнике электрического поля является наличие не равной нулю разности потенциалов между любыми двумя точками проводника.

Однако, электрические силы не могут длительное время поддерживать электрический ток. Направленное движение электрических зарядов через некоторое время приводит к выравниванию потенциалов на концах проводника и, следовательно, к исчезновению в нем электрического поля. Для поддержания тока в электрической цепи на заряды кроме кулоновских сил должны действовать силы неэлектрической природы (сторонние силы). Устройство, создающее сторонние силы, поддерживающее разность потенциалов в цепи и преобразующее различные виды энергии в электрическую энергию, называется источником тока.

Условия существования электрического тока:

· наличие свободных носителей зарядов

· наличие разности потенциалов. это условия возникновения тока. чтобы ток существовал

· замкнутая цепь

· источник сторонних сил, который поддерживает разность потенциалов.

Любые силы, действующие на электрически заряженные частицы, за исключением электростатических (кулоновских) сил, называют сторонними силами.

Электродвижущая сила.

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.

Единицей ЭДС, как и напряжения является вольт. Можно говорить об электродвижущей силе на любом участке цепи. Электродвижущая сила гальванического элемента численно равна работе сторонних сил при перемещении единичного положительного заряда внутри элемента от отрицательного его полюса к положительному. Знак ЭДС определяется в зависимости от произвольно выбранного направления обхода того участка цепи, на котором включен данный источник тока.

Закон Ома для полной цепи.

Рассмотрим простейшую полную цепь, состоящую из источника тока и резистора сопротивлением R. Источник тока имеющий ЭДС ε, обладает сопротивлением r, его называют внутренним сопротивлением источника тока. Для получения закона ома для полной цепи используем закон сохранения энергии.

Пусть за время Δt через поперечное сечение проводника пройдет заряд q. Тогда по формуле , работа сторонних сил при перемещении заряда q равна . Из определения силы тока имеем: q = IΔt. Следовательно, .

Благодаря работе внешних сил при прохождении тока в цепи на ее внешнем и внутреннем участках цепи выделяется количество теплоты, по закону Джоуля-Ленца равное:

Согласно закону сохранения энергии A ст = Q, поэтому Отсюда Таким образом, ЭДС источника тока равна сумме падений напряжений на внешнем и внутреннем участках цепи.