Особенности дыхания в различных условиях. Дышать жидкостью: российские ученые сделали фантастику реальностью

Разрабатываемая Фондом перспективных исследований (ФПИ) система жидкостного дыхания поможет подводникам быстро подниматься на поверхность без кессонной болезни. Антропоморфный робот Фёдор примет участие в испытаниях нового российского космического корабля и может помочь Росатому в утилизации ядерных отходов. Подводный аппарат для экстремальных глубин будет испытан на дне Марианской впадины. О проектах ФПИ «Известиям» рассказал председатель научно-технического совета фонда Виталий Давыдов.

- Сколько проектов реализовано фондом и какие из них вы бы отметили особо?

В разной стадии выполнения у нас находится около 50 проектов. Еще 25 завершены. Полученные результаты переданы или передаются заказчикам. Созданы демонстраторы технологий, получено порядка 400 результатов интеллектуальной деятельности. Диапазон тематик - от погружения на дно Марианской впадины до космоса.

Из реализованных проектов можно назвать, например, успешно проведенные в прошлом году совместно с ведущим предприятием ракетного двигателестроения НПО «Энергомаш» испытания ракетного детонационного двигателя. Параллельно впервые в мире фонд получил устойчивый рабочий режим демонстратора детонационного воздушно-реактивного двигателя. Если первый предназначен для космической техники, то второй - для авиационной. Гиперзвуковые летательные аппараты, использующие такие системы, столкнутся с множеством проблем. Например, с высокими температурами. Фонд нашел решение этих проблем, использовав эффект термоэмиссии - преобразования тепловой энергии в электрическую. Фактически мы получаем электроэнергию для питания систем аппарата и одновременно охлаждаем элементы планера и двигатель.

- Один из самых известных проектов Фонда - робот Фёдор. Его создание завершено?

Да, работы по Фёдору завершены. Сейчас идет передача МЧС полученных результатов. Причем оказалось, что они заинтересовали не только МЧС, но и другие министерства, а также госкорпорации. Многие, наверное, слышали, что технологии Фёдора будут использованы «Роскосмосом» для создания робота-испытателя, который отправится в полет на новом российском пилотируемом космическом корабле «Федерация». Большой интерес к роботу проявил «Росатом». Ему нужны технологии, обеспечивающие возможность работы в условиях, опасных для человека. Например, при утилизации ядерных отходов.

- Можно ли использовать Фёдора для спасения экипажей подлодок, обследования затонувших кораблей?

Технологии, полученные при создании Фёдора, могут быть использованы для различных целей. Фонд реализует ряд проектов, связанных с подводными необитаемыми аппаратами. И в принципе технологии антропоморфного робота могут быть в них интегрированы. В частности, предусматривается создание подводного аппарата для работы на экстремальных глубинах. Мы намерены испытать его в Марианской впадине. При этом не просто опуститься на дно, как наши предшественники, а обеспечить возможность передвижения в придонной области и проведения научных исследований. Такого еще никто не делал.

В США разрабатывается четырехногий робот для перевозки грузов BigDog. Ведутся ли в ФПИ аналогичные разработки?

Что касается шагающих платформ для переноски грузов или боеприпасов, то фонд такую работу не ведет. Но некоторые организации, с которыми мы сотрудничаем, в инициативном порядке занимались подобными разработками. Вопрос о том, нужен ли подобный робот на поле боя, остается открытым. В большинстве случаев выгоднее использовать колесные или гусеничные машины.

- Какие робототехнические платформы создаются в ФПИ, помимо Фёдора?

У нас разрабатывается целый спектр платформ различного назначения. Это и наземные, и воздушные, и морские роботы. Выполняющие задачи разведки, транспортировки грузов, а также способные вести боевые действия. Одним из направлений работ в этой области является определение облика и отработка способов применения дронов, включая групповой. Думаю, что если всё будет идти теми же темпами, уже в ближайшее время произойдет существенное расширение применения дронов в том числе и для решения боевых задач.

- ФПИ разрабатывает атмосферный спутник «Сова» - большой электросамолет. Как идут его испытания?

-Испытания демонстратора беспилотного аппарата «Сова» завершены. Состоялся длительный полет на высоте около 20 тыс. м. К сожалению, аппарат попал в зону сильной турбулентности и получил серьезные повреждения. Но к этому времени мы уже получили все необходимые данные, убедились как в перспективности самого направления исследований, так и правильности выбранных конструктивных решений . Полученный опыт будет использован при создании и испытании полноразмерного аппарата.

Предприятие «Роскосмоса» НПО им. Лавочкина ведет аналогичную разработку - создает атмосферный спутник «Аист». Вы следите за разработкой конкурентов?

Мы в курсе этих работ, поддерживаем связь с разработчиками «Аиста». Речь идет не о конкуренции, а о взаимном дополнении.

Могут ли подобные аппараты использоваться в арктической зоне, где нет связи и инфраструктуры для частых взлетов-посадок?

Необходимо учитывать, что весной и осенью, а тем более в условиях полярной ночи «атмосферный спутник» может просто не получить энергии, необходимой для зарядки батарей. Это ограничивает его применение.

Недавно общественности были продемонстрированы технологии жидкостного дыхания – погружение таксы в специальную насыщенную кислородом жидкость. Демонстрация «утопления» вызвала волну протестов. Продолжатся ли после этого работы в данном направлении?

-Работы по жидкостному дыханию продолжаются. На основе нашей разработки могут быть спасены тысячи жизней. И речь идет не только о подводниках, которые благодаря жидкостному дыханию смогут без последствий в виде кессонной болезни оперативно подняться на поверхность. Есть целый ряд заболеваний и травм легких, при лечении которых можно добиться успеха с помощью жидкостного дыхания. Интересны перспективы использования технологии жидкостного дыхания для быстрого охлаждения организма, когда необходимо замедлить протекающие в нем процессы. Сейчас это делается за счет внешнего охлаждения или ввода в кровь специального раствора. Можно то же самое, но более эффективно, делать с помощью заполнения легких охлажденной дыхательной смесью.

Руководитель лаборатории ФПИ по созданию жидкостного дыхания Антон Тоньшин с таксой по кличке Николас, с помощью которой ученые Фонда перспективных исследований (ФПИ) изучали возможности жидкостного дыхания

Надо отметить, что нет никакого нанесения вреда здоровью животных, участвующих в данных экспериментах. Все «экспериментаторы» живы. Часть из них содержится в лаборатории, где их состояние контролируют. Многие стали домашними питомцами сотрудников, но при этом их состояние также периодически отслеживается нашими специалистами. Результаты наблюдений свидетельствуют об отсутствии негативных последствий жидкостного дыхания. Технология отработана, и мы перешли к созданию специальных устройств для ее практической реализации.

- Когда перейдете к исследованиям жидкостного дыхания на людях?

Теоретически мы готовы к таким экспериментам, но для их начала необходимо по крайней мере создать и отработать соответствующее оборудование.

В свое время ФПИ разработал программную платформу для проектирования различной техники, призванную заменить иностранный софт. Используется ли она где-то?

Работы по созданию единой среды российского инженерного программного обеспечения «Гербарий» действительно завершены. Сейчас рассматривается вопрос о ее использовании в «Росатоме» и «Роскосмосе» - для проектирования перспективных образцов продукции атомной промышленности, а также ракетно-космической техники.

- Работает ли фонд в области технологий дополненной реальности?

-Да, фонд ведет такие работы - в частности, совместно с «КамАЗом». Одна из наших лабораторий создала прототип очков дополненной реальности, которые обеспечивают контроль сборки агрегатов для автомобиля. Программа подсказывает, какую деталь нужно взять и куда ее установить. Если оператор совершает неправильные действия, например отступает от установленного порядка сборки изделия или неверно устанавливает его элементы, звучит звуковое оповещение о неверном шаге, а на очки выводится информация об ошибке. При этом факт неправильных действий или даже их попытка фиксируется в электронном журнале. В итоге должна быть создана система, исключающая возможность неправильной сборки. В дальнейшем мы намерены развивать указанную систему в направлении миниатюризации, заменить очки на более совершенные устройства.

Перспективы вычислительной техники сейчас связывают с развитием квантовых компьютеров, а защиты информации - с квантовой криптографией. Развивает ли ФПИ эти направления?

Фонд занимаемся проблематикой, связанной с квантовыми вычислениями, созданием соответствующей элементной базы. Что касается квантовой связи, у всех на слуху опыты китайских коллег. Но и мы не стоим на месте.

Еще осенью 2016 года ФПИ и «Ростелеком» обеспечили квантовую передачу информации по оптико-волоконному кабелю между Ногинском и Павловским Посадом. Эксперимент прошел успешно. Сегодня можно уже поговорить по квантовому телефону. Важной особенностью квантовой передачи информации является невозможность ее перехвата.

В ходе упомянутого эксперимента квантовая связь была обеспечена на расстоянии около 30 км. Технически нет проблем осуществить ее и на большей дальности. Готовимся провести сеанс связи по атмосферному каналу. Прорабатываем возможность эксперимента по квантовой связи из космоса с использованием потенциала Международной космической станции.

Это уже, наверное, клише в научной фантастике: в костюм или капсулу очень быстро поступает некое вязкое вещество, и главный герой внезапно для себя обнаруживает, как быстро он теряет остатки воздуха из собственных лёгких, а его внутренности заполняются необычной жидкостью оттенка от лимфы до крови. В конце концов он даже паникует, но делает несколько инстинктивных глотков или, скорее, вздохов и с удивлением обнаруживает - он может дышать этой экзотической смесью так, словно он дышит обычным воздухом.

Так ли мы далеки от реализации идеи жидкостного дыхания? Возможно ли дышать жидкой смесью, и есть ли в этом реальная необходимость? Существует три перспективных пути использования этой технологии: это медицина, ныряние на большие глубины и космонавтика.

Давление на тело ныряльщика растёт с каждыми десятью метрами на одну атмосферу. Из-за резкого понижения давления может начаться кессонная болезнь, при проявлениях которой растворённые в крови газы начинают закипать пузырьками. Также при высоком давлении возможны кислородное и наркотическое азотное отравление. Со всем этим борются применением специальных дыхательных смесей, но и они не дают никаких гарантий, а лишь снижают вероятность неприятных последствий. Конечно, можно использовать водолазные скафандры, которые поддерживают давление на тело ныряльщика и его дыхательной смеси ровно в одну атмосферу, но они в свою очередь крупногабаритны, громоздки, затрудняют движение, а также очень дороги.

Жидкостное дыхание могло бы предоставить третье решение этой проблемы с сохранением мобильности эластичных гидрокомбинезонов и низких рисков жёстких скафандров. Дыхательная жидкость в отличие от дорогих дыхательных смесей не насыщает тело гелием или азотом, поэтому также отпадает необходимость в медленной декомпрессии для избежания кессонной болезни.

В медицине жидкостное дыхание можно использовать при лечении недоношенных детей, чтобы избежать повреждения недоразвитых бронхов лёгких давлением, объёмом и концентрацией кислорода воздуха аппаратов искусственной вентиляции лёгких. Подбирать и пробовать различные смеси для обеспечения выживания недоношенного плода начали уже в 90-х. Возможно использование жидкой смеси при полных остановках или частичных недостаточностях дыхания.

Космический полёт сопряжён с большими перегрузками, а жидкости распространяют давление равномерно. Если человека погрузить в жидкость, то при перегрузках давление будет идти на всё его тело, а не конкретные опоры (спинки кресла, ремни безопасности). Такой принцип использовался при создании костюма для перегрузок Libelle, который представляет из себя жёсткий скафандр, наполненный водой, что позволяет пилоту сохранять сознание и работоспособность даже при перегрузках выше 10 g.

Этот метод ограничен разницей плотностей тканей тела человека и используемой жидкостью для погружения, поэтому предел составляет 15-20 g. Но можно пойти дальше и заполнить лёгкие жидкостью, близкой по плотности к воде. Полностью погруженный в жидкость и дышащий жидкостью космонавт будет относительно слабо ощущать эффект экстремально высоких перегрузок, поскольку силы в жидкости распределяются равномерно во всех направлениях, но эффект всё равно будет из-за различной плотности тканей его тела. Предел всё равно останется, но он будет высок.

Первые эксперименты по жидкостному дыханию проводились в 60-х годах прошлого века на лабораторных мышах и крысах, которых заставили вдыхать солевой раствор с высоким содержанием растворённого кислорода. Эта примитивная смесь давала животным возможность выжить некоторое количество времени, но она не могла удалять углекислый газ, поэтому лёгким животных наносился непоправимый вред.

Позже начались работы с перфторуглеродами, и их первые результаты были куда лучше результатов экспериментов с соляным раствором. Перфторуглероды - это органические вещества, в которых все атомы водорода замещены на атомы фтора. Перфторуглеродные соединения обладают способностью растворять как кислород, так и углекислый газ, они очень инертны, бесцветны, прозрачны, не могут нанести повреждения ткани лёгких и не усваиваются организмом.

С того момента жидкости для дыхания были улучшены, самое совершенное на данный момент решение называется перфлуброн или «Ликвивент» (коммерческое название). Эта маслоподобная прозрачная жидкость с плотностью в два раза выше плотности воды обладает множеством полезных качеств: она может нести в два раза больше кислорода, чем обычный воздух, имеет низкую температуру кипения, поэтому после использования окончательное её удаление из лёгких производится испарением. Альвеолы под воздействием этой жидкости лучше открываются, и вещество получает доступ к их содержимому, это улучшает обмен газами.

Лёгкие могут заполняться жидкостью полностью, это потребует мембранного оксигенатора, нагревающего элемента и принудительной вентиляции. Но в клинической практике чаще всего так не делают, а используют жидкостное дыхание в комбинации с обычной газовой вентиляцией, заполняя лёгкие перфлуброном лишь частично, примерно на 40% от всего объёма.

Кадр из фильма Бездна (The Abyss), 1989 год

Что же мешает нам использовать жидкостное дыхание? Жидкость для дыхания вязка и плохо выводит углекислый газ, поэтому понадобится принудительная вентиляция лёгких. Для удаления углекислого газа от обычного человека массой 70 килограммов потребуется поток 5 литров в минуту и выше, и это очень много с учётом высокой вязкости жидкостей. При физических нагрузках величина необходимого потока будет только расти, и вряд ли человек сможет двигать 10 литров жидкости в минуту. Наши лёгкие просто не созданы для дыхания жидкостью и сами прокачивать такие объёмы не в состоянии.

Использование положительных черт жидкости для дыхания в авиации и космонавтике тоже может навсегда остаться мечтой - жидкость в лёгких для костюма защиты от перегрузок должна обладать плотностью воды, а перфлуброн в два раза её тяжелей.

Да, наши лёгкие технически способны «дышать» определённой богатой кислородом смесью, но, к сожалению, пока мы можем это делать только на протяжении нескольких минут, поскольку наши лёгкие не настолько сильны, чтобы обеспечивать циркуляцию дыхательной смеси продолжительные периоды времени. Ситуация может измениться в будущем, остаётся лишь обратить наши надежды на исследователей в этой области.

Тема жидкостного дыхания давно волнует умы людей - сначала фантастов, а затем и серьёзных учёных. Как выяснилось после долгих лет исследований, наши лёгкие всё же способны работать наподобие рыбьих жабр: для этого необходимо заполнить их специальной жидкостью, которая будет регулярно обновляться. Эти разработки являются победой человека над силами природы и законами физики, а понятие кессонной болезни скоро безнадёжно устареет.

Глубоководная болезнь

Декомпрессионная, или кессонная болезнь, известна с середины 19 века. Заболевание связано с тем, что в баллонах со сжатым воздухом, которыми пользуются водолазы, находится обычный по составу воздух. В нём содержится всего 20% кислорода, который наш организм полностью использует и перерабатывает в углекислый газ. Остальные 80% составляют, в основном, азот, гелий, водород и незначительные примеси. Когда дайвер быстро поднимается из глубины моря на поверхность, давление этих балластных газов изменяется. В результате они начинают выделяться в виде пузырьков в кровь и разрушать стенки клеток и кровеносных сосудов, блокировать кровоток. При тяжёлой форме декомпрессионная болезнь может привести к параличу или смерти.

Поэтому увлечённые дайвингом люди долгое время не могли себе позволить нырять глубже 70 метров, потому что это крайне опасно. На большие глубины способны погружаться лишь уникальные специалисты - их все-го несколько человек в мире. Мировой рекордсмен здесь - южно-африканец Нуно Гомес. Его погружение в 2005 году на глубину 318 метров заняло всего 14 минут, тогда как подъём продолжался около 12 часов. При этом Гомес потратил 35 баллонов (почти 450 литров) сжатого воздуха.

Группа риска включает в себя не только дайверов и рабочих, работающих в кессонах (камерах с повышенным давлением, обычно использующиеся для строительства туннелей под реками и закрепления в донном грунте опор мостов), но и пилотов на большой высоте, а так же космонавтов, использующих для выхода в открытый космос костюмы, поддерживающие низкое давление. К сожалению, заменить дыхательную смесь чистым кислородом - тоже не вариант. Он вызывает головные боли и общую слабость, а при продолжительном использовании наступает перекисное окисление липидов и активацию свободнорадикального окисления, что приводит к истощению антиоксидантов и возникновению окислительного стресса организма. А это уже практически 100%-ный риск развития онкологических заболеваний.

Первые успехи

Первые опыты, связанные с дыханием при помощи жидкости, были проведены в 1966 году на мышах. Кларк Леланд осуществил замену воздуха в легких у подопытных животных жидкими перфторуглеродными соединениями. Результаты были вполне удачными — мыши смогли дышать, будучи погруженными в жидкость на несколько часов, а затем снова дышать воздухом. Уже более 20 лет неонатологи используют подобные технологи для ухода за недоношенными младенцами. Лёгочная ткань таких детишек к рождению сформирована не до конца, поэтому с помощью специальных устройств дыхательную систему насыщают как раз кислородсодержащим раствором на основе перфторуглеродов.

Эти вещества представляют собой углеводороды, в которых все атомы водорода замещены на атомы фтора. Перфторуглероды обладают аномально высокой способностью растворять газы, например, кислород и углекислый газ. Они так же высокоинертны и не метаболизируются в организме, что позволяет использовать их не только для вентиляции лёгких, но даже в качестве искусственной крови. В последние год ведутся исследования по улучшению свойств дыхательной жидкости: новая формула получила название «перфлуброн» Это чистая, маслянистая жидкость, обладающая малой плотностью. Так как у нее весьма низкая температура кипения, она быстро и легко выводится (испаряется) из легких.

К погружению готов!

Арнольд Лэнди (Arnold Lande), бывший хирург, а ныне обычный американский пенсионер-изобретатель, зарегистрировал патент на водолазный костюм, оснащенный баллоном с «жидким воздухом». Оттуда он подаётся в шлем дайвера, заполняет собой все пространство вокруг головы, вытесняет воздух из легких, полостей носоглотки и ушей, насыщая легкие человека достаточным количеством кислорода. В свою очередь, углекислый газ, который выделяется в процессе дыхания, выходит наружу при помощи своеобразного подобия жабр, прикрепленных к бедренной вене ныряльщика.

Таким образом сам процесс дыхания становится попросту не нужен - кислород поступает в кровь через легкие, а углекислый газ выводится прямо из крови. Да и давление толщи воды на по-настоящему большой глубине слишком большое: пытаясь сделать вдох где-нибудь на дне Марианской впадины, водолаз рискует сломать рёбра. Так что во главе угла теперь стоит психологический момент: нужно отучить водолазов дышать, при этом не испытывая вполне понятной тревоги. Для этого дайверам потребуется проходить курс обучения, и только приобретя все необходимые навыки, из бассейна отправляться в «открытое плавание».

«Моё изобретение позволяет полностью избежать развития кессонной болезни, поскольку вдыхаемая жидкость не содержит азота, гелия и водорода, собственно и образующих пузырьки, закупоривающих сосуды и приводящих к серьезным поражениям внутренних органов», -торжествующе заявил Арнольд Лэнди, выступая на Международной конференции по прикладной бионике и биомеханике, состоявшейся в Италии.

Таким образом, изобретатель сделал ценный подарок не только одним лишь покорителям морских глубин. Предполагается, что жидкостное дыхание так же может быть успешно использовано при космических полётах и в качестве одного из средств комплексной терапии некоторых болезней. Порадоваться могли бы и защитники природы: к примеру, печально известный разрыв на нефтяной скважине в Мексиканском заливе произошёл на глубине полторы тысячи метров, что многовато даже для техники. А вот дайверы, дышащие как рыбы, смогли бы в данной ситуации быстро справиться с ремонтом.

«Далеко не все так просто, как было представлено сегодня. Бедная собачка». Такими словами специалисты комментируют эксперимент, продемонстрированный Дмитрием Рогозиным президенту Сербии как пример новейших научных разработок России: собака смогла дышать не воздухом, а жидкостью. Что представляет собой эта технология и может ли она помочь российским военным?

В ходе встречи в Москве с президентом Сербии Александром Вучичем вице-премьер Дмитрий Рогозин во вторник ряд новейших разработок российского Фонда перспективных исследований (ФПИ). Рогозин отметил, что сербского гостя могли бы свозить на какое-нибудь огромное промышленное предприятие, но куда интереснее «показать тот самый завтрашний день, куда мы стремимся». Таким «гвоздем программы» стал уникальный проект жидкостного дыхания, который был впервые продемонстрирован публично.

Как пояснил руководитель проекта военно-морской врач Федор Арсеньев, задача данного изобретения состоит в спасении экипажа гибнущей подводной лодки. Как известно, с глубины ниже 100 метров невозможно быстро подняться на поверхность из-за кессонной болезни. Чтобы избежать ее, на подлодке можно будет надеть аппарат с «не содержащей азота жидкостью», как передал ТАСС . Легкие человека при этом не будут сжиматься, что позволит быстро подняться на поверхность и спастись.

На глазах у сербского президента в особый резервуар с жидкостью была помещена собака – такса. За несколько минут она освоилась и начала самостоятельно «дышать» жидкостью. После сотрудники лаборатории вынули пса из резервуара, вытерли полотенцем, и президент Сербии смог лично убедиться, что собака в порядке. Вучич погладил пса и признался, что очень впечатлен.

Мечта про «человека-амфибию»

«Жидкостное дыхание как медицинская технология подразумевает вентиляцию легких не воздухом, а насыщенной кислородом жидкостью. В рамках проекта решается научная задача по изучению особенностей влияния различных переносящих кислород веществ на газообмен и другие функции клеток, тканей и органов млекопитающих», – рассказали газете ВЗГЛЯД в отделе по связям с общественностью Фонда перспективных исследований (ФПИ).

Одним из направлений является формирование медико-биологических основ технологии самостоятельной эвакуации подводников с больших глубин на поверхность, отметили в ФПИ, но технология способна вообще заметно продвинуть исследование человеком ранее не изученных морских и океанских глубин. Утверждается, что данная разработка понадобится и в медицине – например, поможет выходить недоношенных детей или людей, получивших ожоги дыхательных путей, найдет применение в лечении бронхообструктивных, инфекционных и других тяжелых заболеваний.

Нужно отметить, что жидкостное дыхание на первый взгляд кажется фантастическим вымыслом, но на самом деле имеет научную основу, и под эту идею подведена серьезная теоретическая база. Вместо кислорода ученые предлагают использовать особые химические соединения, которые способны хорошо растворять кислород и углекислый газ.

«Жидкостное дыхание» давно стало идеей фикс для ученых всего мира. Прибор «человека-амфибии» способен спасать аквалангистов и подводников, а в перспективе пригодится в длительных космических полетах. Разработки велись в 1970–1980-е годы в СССР и США, эксперименты проводились на животных, но больших успехов добиться не удалось.

Член-корреспондент РАЕН, кандидат медицинских наук Андрей Филиппенко, который продолжительное время работает над проектом жидкостного дыхания, признавался ранее газете «Совершенно секретно» , что о разработках практически ничего нельзя говорить из-за их закрытости. Но то, что средства аварийного спасения экипажей безнадежно устарели и нуждаются в скорейшей модернизации, показала трагедия подлодки «Курск».

Напомним, ранее сообщалось о других смелых проектах ФПИ, в частности это «конструктор» для создания и самолета будущего.

Наверху должна ждать реанимация

«Технология не один десяток лет отрабатывалась, но для этого нужны очень хорошо подготовленные люди. Когда человеку вливают в легкие эту жидкость – будет автоматически срабатывать инстинкт самосохранения, спазмы перекрывают горло, организм сопротивляется изо всех сил. Обычно это делается под наблюдением врачей. На людях такие опыты проводились в единичных случаях, а в основном они отрабатывались на животных», – пояснил газете ВЗГЛЯД глава Комитета при правительстве РФ по проведению подводных работ особого назначения в 1992–1994 гг., доктор технических наук, профессор, вице-адмирал Тенгиз Борисов.

«Как правило, вставляется в гортань специальная трубка, с помощью которой легкие медленно заполняются этой жидкостью, – сказал Борисов, добавив:

– При этом организм всячески сопротивляется, нужны препараты, которые блокируют спазмы, нужны анестетики. Далеко не все так просто, как было представлено сегодня. Бедная собачка».

«Если человек всплывет из подводной лодки, то он действительно избежит кессонной болезни, но самостоятельно спасаться подводники в любом случае не смогут. Нужно: а) исключительно грамотные люди на подводной лодке, б) наверху должна ждать, грубо говоря, команда реанимации, которая будет выкачивать из человека эту жидкость и заставлять его дышать обычным способом», – добавил эксперт.

«Думаю, в медицине эту технологию куда легче внедрить и применять в условиях стационара, когда рядом есть специалисты и большое количество необходимой аппаратуры. А вот спасение экипажа затонувшей субмарины такими методами в обозримом будущем крайне маловероятно», – заключил Борисов.

Я пересматривала его раз 8 точно. И каждый раз делала это исключительно из развлекательной цели и интересного сюжета с потрясающей актерской игрой, которая по свидетельству съемочной группы сильно вымотала исполнителей главных ролей.

А в последний раз я поняла, что в этом фильме есть что-то большее.

На протяжении всего фильма нам рассказывают о дыхании в жидкости. То, с чего мы начинали в утробе матери, может продолжиться. Главное - ситуация.

Все 7 просмотров для меня фильм был лишь фантастикой, игрой воображения сценариста или режиссера. В одной сцене показывают мышку, которая дышит специальной жидкостью. В другой - Бада (герой Эда Харриса) в скафандре, заполненном этой самой жидкостью. Его отправляют на глубину, где никто не был, заполняя его легкие "особой водой", потому что кислороду в теле человека на таких глубинах делать нечего.

Разработав около шестидесяти лет назад акваланг, француз Жак Ив Кусто в его название ввел термин «вода» и «легкие». Однако сама технология полного заполнения легких водой (в виде водно-солевого раствора) стала известна из публикации Kylstra J. «Мышь как рыба» - первой по жидкостному дыханию, в которой сказано о такой идее спасения подводников. Он же первый провел на сухопутных млекопитающих (мышах) спуски на глубину 1000 м и показал, что переход на жидкостное дыхание полностью предотвращает гибель от декомпрессионного газообразования. В СССР это было подтверждено при искусственной вентиляции легких (ИВЛ) жидкостью собак в условиях имитации водолазных спусков на 1000 м.

Вся система жидкостного дыхания основана на формуле перфторуглерода. Перфлуброн - это чистая, маслянистая жидкость, обладающая малой плотностью. Она содержит больше кислорода, чем воздух. Поскольку эта жидкость инертна, то она не наносит вреда легким. Так как у нее весьма низкая температура кипения, она быстро и легко выводится из легких;

На мировом рынке мало производителей этих жидкостей, так как их разработка - побочный продукт «атомных проектов». Известны жидкости медицинского качества всего нескольких мировых фирм: DuPont (США), ICI и F2 (Великобритания), Elf-Atochem (Франция). Перфторуглеродные жидкости, технологически отработанные в Санкт-Петербургском институте прикладной химии, сейчас лидируют в медицине и косметологии;

В России серьезно и без смешков в курилке задумались о теме свободного всплытия через особую систему жидкостного дыхания после ;

С момента образования РФ разработка метода жидкостного дыхания для спасения подводников, как и подготовка волонтерских испытаний 2007 года, выполнялась и выполняется без грантов, за счет средств «AVF» в работе с СПб ГМУ им. И.П. Павлова и другими организациями;

В настоящее время специальный глубоководный водолазный аппарат существует в виде проекта в рамках авторской концепции быстрого спасения подводников. Он базируется на уникальных свойствах быстрых и стойких (к давлению) водолазов жидкостного дыхания;

Arnold Lande, бывший хирург, а ныне американский пенсионер-изобретатель, зарегистрировал патент на водолазный костюм, оснащенный баллоном со специальной жидкостью, обогащенной кислородом. Так называемый “жидкий воздух” подается из баллона в шлем дайвера, заполняет собой все пространство вокруг головы, вытесняет воздух из легких, полостей носоглотки и ушей, насыщая легкие человека достаточным количеством кислорода. В свою очередь, углекислый газ, который выделяется в процессе дыхания, выходит наружу при помощи своеобразного подобия жабр, прикрепленных к бедренной вене ныряльщика. То есть сам процесс дыхания становится попросту не нужен - кислород поступает в кровь через легкие, а углекислый газ выводится прямо из крови. Правда, как будет подаваться из баллона эта самая несжимаемая жидкость пока еще не совсем понятно…;

Есть информация о том, что опыты по дыханию в жидкости вовсю проводятся. И в России в том числе;

В фильме "Бездна", конечно, никто из актеров не дышал "особой водой". И в одной из сцен даже допущен маленький, но очень запоминающийся косяк, когда Бад опускается на глубину, из его рта выходит предательский пузырек,..которого в условиях жидкостного дыхания быть не должно;

Актеру Эду Харрису, сыгравшему одну из главных ролей, роль Бада, как-то по пути со съемок пришлось съехать на обочину из-за приступа непроизвольного плача..Настолько изматывающим был процесс создания фильма. Камерон требовал исключительной правдоподобности.

Смотрите кино. Дышите свободно и съезжайте с обочин только чтобы пофотографировать бабочек.

Спасибо за открытый доступ к некоторым данным члену-корреспонденту РАЕН, к.м.н. А. В. Филиппенко.