Схема организации улично-дорожной сети и движения транспорта для проекта планировки территории конной базы аванпост. Схемы построения улично-дорожной сети городов

В советском и зарубежном градостроительстве применяются самые разнообразные схемы построения улично-дорожной сети. Тем не менее, анализ планировки различных городов позволяет говорить о существовании принципиальных геометрических схем, которые определяют конфигурацию и начертание их основного большинства. Каждая из этих схем имеет свои положительные и отрицательные стороны.

К наиболее распространенным из них следовало бы отнести следующие:

Быстрый рост автомобильного движения в городах обнаружил несоответствие планировочной и технической характеристики устаревшей сети городских улиц современным требованиям транспорта.

Так, практика показала, что в старых городах частные въезды и выезды из микрорайонов на магистральные улицы образуют густую сеть перекрестков, что значительно снижает интенсивность, скорость и безопасность движения.

В связи с этим при планировке новых городов рекомендуется применять принцип последовательного примыкания одной категории улиц к другой (принцип “дерева” или “реки”). Сущность его заключается в том, что каждое транспортное примыкание должно быть образовано либо равными категориями улиц, либо улицами, различающимися всего лишь на одну категорию в последовательности: подъезд->проезд –> жилая улица –> магистральная улица районного значения –> магистральная улица городского значения –> городская дорога (рис. 4.3.).

В любом случае композиционная схема улично-дорожной сети не должна исходить из формальных соображений. Она должна определяться конкретными условиями местности, отвечая требованиям архитектурно-планировочной идеи построения города.

В целом, при оценке схемы начертания городских магистралей, можно руководствоваться таким обобщенным показателем, как плотность уличной сети, которая определяется отношением общей протяженности улиц (км) к площади территории города (км 2).

Потребность в классификации сети городских улиц и дорог по­явилась в связи с необходимостью обеспечивать на территории го­рода движение всех видов городского наземного транспорта. Целью классификации является разделение движения на однородные транс­портные потоки в соответствии с функциональным назначением улиц.

Для увеличения пропускной способности городских улиц и обес­печения четкой организации движения необходимо унифицировать подвижной состав, сделать его более однородным. Это позволяет распределять перевозки по отдельным магистралям города и по сте­пени воздействия подвижного состава на окружающую среду (шум, вибрация, загазованность воздуха), осуществлять эти перевозки с учетом функционального зонирования города.

В настоящее время имеется только функциональная классифи­кация городских улиц, делящая все улицы города по их назначению, но не по техническим показателям. Это объясняется тем, что улич­ную сеть закладывают в генеральный план города с ориентацией на очень отдаленную перспективу (50 - 100 лет) и для развития этой сети резервируют территорию, по границам которой располагается городская застройка. Границу, отделяющую улицу от территории застройки, за пределы которой не должны выходить здания, назы­вают красными линиями. Все элементы улицы, обеспечивающие движение пешеходов и транспортных средств, должны располагать­ся в пределах красных линий.

Разместить в пределах отведенных площадей тротуары, проез­жие части и другие элементы улицы, обеспечивающие пропуск перс­пективной интенсивности движения, более важно, чем нормировать технические параметры этих улиц (табл. 1.3).

В принятой классификации установлены минимальное число элементов поперечного профиля улицы и их основные размеры. Уве­личение этих размеров, возможно при технико-экономическом обо­сновании, базой которого являются расчеты по оценке пропускной способности улицы, безопасности движения и транспортных потерь. Такие расчеты являются обязательными при проектировании го­родских улиц и практически устраняют неопределенность, связан­ную с отсутствием технической классификации. Одна и та же кате­гория улицы может в зависимости от ожидаемой интенсивности

Основные расчетные параметры

Магист­ральные до­роги ско­ростного движения

Транспортная связь между промыш­ленными и планировочными районами в крупнейших и крупных городах, меж­ду городом и пригородной зоной, глу­бокий ввод автомобильных магист­ралей в город, связь с аэропортами, зонами массового отдыха. Пересече­ния с улицами и дорогами в разных уровнях. Преобладающие виды транс­порта - общественный экспрессный пассажирский и легковой. Местное движение, а также трамвайное и гру­зовое исключаются

Скоростные дороги проекти руют по нормативам автомо бильных дорог I технической категории. Расчетная скорость в густонаселенной части города 80 км/ч; вне центральной части города 100 км/ч; в пригородной части города 120 км/ч. Дорога обособлена от сети городских улиц. Число полос движения 4-8, ширина полосы движения 3,75 м

Магист­ральные до­роги регули­руемого дви­жения

Транспортная связь между района­ми города; на отдельных участках и направлениях дорога преимущест­венно грузового движения, осущест­вляемого вне жилой застройки, выхо­ды на внешние автомобильные дороги. Лересечения с улицами и дорогами, как правило, в одном уровне

В зависимости от состава дви-жения проектируются по норма тивам для автомобильных до рог общей сети или как промыш­ленные дороги. Расчетная ско­рость в зависимости от состава движения 80--100 км/ч. Число полос движения 2-6, ширина полосы движения 3,5 м; необхо димы местные или боковые проезды

Магист­ральные улицы: а) об­щегородско­го значения

Непрерывного движения - транс­портная связь между жилыми, про­мышленными районами и общест­венными центрами в крупнейших, крупных и больших городах, а также с другими магистральными улицами, городскими и внешними дорогами, движения по главным направлениям на пересечениях в разных уровнях. Основной вид транспорта - общест­венный пассажирский и легковой; при интенсивности движения автобусов более 100 ед/ч для них необходима специальная полоса без права заезда на нее других транспортных средств Регулируемого движения - транс­портная связь между жилыми, про­мышленными районами и центром города, выход на другие городские дороги и улицы, внешние автомобиль­ные дороги. Пересечения с другими улицами и дорогами, как правило, в одном уровне. Основные виды транспорта - общественный пасса­жирский и легковой

Расчетная скорость 100 км/ч, число полос движения 4-8, ширина полосы движения 3,5- 3,75 м, продольные уклоны до 40%; разделительные полосы, местные или боковые проезды. Радиусы кривых: в плане 500 м; в продольном профиле выпуклых более 5000 м, вогнутых более 1000 м

Расчетная скорость 80 км/ч, число полос движения 4-8, ши­рина полосы движения 3,5 м, продольные уклоны до 50%; разделительные полосы, местные или боковые проезды. Радиусы кривых: в плане 400 м; в про­дольном профиле выпуклых более 3000 м, вогнутых - более 1000 м

Продолжение табл. 1.3

Функциональное назначение улиц

Основные расчетные параметры

б) рай­онного значе­ния

Транспортная связь в пределах пла­нировочных районов, с промышлен­ными предприятиями, общественными центрами и местами массового отдыха и спорта, а также магистральными улицами в одном уровне. Допускается движение грузовых автомобилей

Расчетная скорость 60 км/ч, количество полос движения 2- 4, радиусы кривых: в плане более 250 м, в продольном про­филе выпуклых - более 2500 м, вогнутых более 1000 м. Про­дольные уклоны до 60%о. Рас­стояние между остановочными пунктами пассажирского транс­порта не более 600 м

Улицы и дороги мест­ного значе­ния:

а) в жи­лой за­стройке

Транспортная (без пропуска пото­ков грузовых автомобилей и общест­венного транспорта) и пешеходная связь на территории жилых районов, выходы на магистральные улицы и до­роги регулируемого движения

Расчетная скорость 40 км/ч, число полос движения 2-3, ширина полосы движения 3,0 м, продольные уклоны до 7О%о, тротуары шириной более 1,5 м

б) про-мыш-ленно-склад-ские в) пе­шеход­ные

Транспортная связь и пропуск пре-мущественно грузовых автомобилей в пределах района, выходы на ма­гистральные городские улицы и доро­ги. Пересечения в одном уровне. Пешеходная связь с местами при­ложения труда, учреждениями и пред­приятиями обслуживания, в том числе в пределах общественных центров, местами отдыха и остановочными пунктами общественного транспорта

Расчетная скорость 50 км/ч, число полос движения 2-4, ширина полосы движения 3,5 м, продольные уклоны до 70% 0

Ширина одной полосы пеше­ходного движения 1,0 м, всей улицы или дороги - по расчету, наибольший продольный уклон 4О%о

движения иметь различную ширину основной проезжей части, мест­ных проездов, разделительных полос и тротуаров. Но в любом случае минимальная техническая оснащенность улицы определена ее функ­циональным назначением.

Основные перевозки пассажиров и грузов в городах осуществ­ляют на магистральных улицах. Именно эти улицы и обусловлива­ют тип улично-дорожной сети города. Число магистральных улиц и их протяженность определяются ожидаемым уровнем автомоби­лизации города. Для отечественных городов этот уровень принят 180 - 220 авт. на 1000 жителей. Меньшие цифры относятся к круп­нейшим и крупным городам, большие - к средним городам и посел­кам. Для такого уровня автомобилизации плотность магистральной Улично-дорожной сети, определяемая как отношение протяженно­сти магистральных улиц к площади района, должна быть 2,2 - 2,4 км/км 2 территории города. Эта плотность не должна быть равно­мерной по всей территории города. В центральной части города плот-

ность магистральных улиц должна быть увеличена до 3,0 3,5 км/км 2 , в периферийных районах с жилой застройкой - до 2,0 2,5 км/км 2 , в промышленных - уменьшена до 1,5 - 2,0 км/км 2 , а, лесопарковых зонах - до 0,5 - 1,0 км/км 2 .

Плотность местной уличной сети на межмагистральных терри-ториях может достигать 2 км/км 2 . Следует при этом учитывать, что размещение и хранение автомобилей личного пользования предпо-лагаются на проезжей части местной уличной сети. В нормах на проектирование жилых районов предусматривается размещение на территории микрорайонов не менее 70 % автомобилей граждан, проживающих в этом микрорайоне, с учетом расчетного уровня ав­томобилизации. Площадки для хранения автомобилей в микрорай­онах должны вмещать не менее 25 % легковых автомобилей.

Улицы и дороги образуют на плане города сеть наземных путей сообщения. По очертаниям ее можно отнести с более или менее су-щественными допущениями к одной из принципиальных схем улич-но-дорожной сети города. Такими схемами являются свободные, не содержащие четкого геометрического рисунка, прямоугольные, прямоугольно-диагональные и радиально-кольцевые.

Свободные схемы улиц характерны для старых южных городов Вся сеть состоит из узких кривых улиц с переменной шириной про-езжей части, нередко исключающей движение автомобилей в двух направлениях (рис. 1.9, а). Реконструкция такой сети улиц, как пра-вило, связана с разрушением существующей застройки. Для совре-менных городов эта схема непригодна и может быть оставлена толь-ко в заповедных частях города.

Прямоугольная схема распространена очень широко и присуща главным образом молодым городам или старым (относительно), но строившимся по единому плану. К числу таких городов относятся Ленинград (центральная часть), Краснодар, Алма-Ата. Достоинст-вами прямоугольной схемы являются отсутствие четко выраженного центрального ядра и возможность равномерного распределения транспортных потоков по всей территории города (рис. 1.9, б). Не достатки этой схемы - большое число сильно загруженных Пересе чений, которые затрудняют организацию движения и увеличиваю транспортные потери, большие перепробеги автомобилей по направ­лениям, не совпадающим с направлениями улиц.

Приспособленность уличной сети к требованиям современного городского движения оценивается коэффициентом непрямолиней ности - отношением действительной длины пути между двумя точ ками к длине воздушной линии. Для прямоугольной схемы улиц этот коэффициент имеет наибольшее значение- 1,4- 1,5. Это означа-ет, что в городах с такой схемой улиц городской транспорт для пере-возки пассажиров и грузов совершает перепробеги на 40 - 50 % При одинаковых объемах перевозок интенсивность движения на улицах таких городов со всеми вытекающими отсюда последствиями (расход топлива, загрязнение окружающей среды, повышение ава

рийности, перегрузка улиц движением) на 25 - 40 % выше, чем в городах с радиально-кольцевыми схемами.

Прямоугольно-диагональная схема улиц является развитием прямоугольной схемы (рис. 1.9, в). Она включает в себя диагональ­ные и хордовые улицы, пробиваемые в существующей застройке по наиболее загруженным направлениям. Коэффициент непрямоли­нейности для таких схем составляет 1,2- 1,3.

Эта схема несколько улучшает транспортную характеристику уличной сети города, но создает новые проблемы: пересечение горо­да по диагонали вызывает появление сложных пересечений с пятью и шестью вливающимися улицами. При малой интенсивности дви­жения (в сумме на всех улицах менее 1500 авт./ч) для их развязки можно применять кольцевую схему, при высокой - транспортные развязки в двух и трех уровнях.

Радиально-кольцевая схема уличной сети характерна для круп­нейших и крупных городов и содержит два принципиально разных вида магистралей - радиальные и кольцевые (рис. 1.9, г).

Радиальные магистрали являются чаще всего продолжением автомобильных дорог и служат для глубокого ввода транспортных потоков в город, для связи центра города с периферией и отдельных районов между собой. Кольцевые магистрали - это прежде всего распределительные магистрали, соединяющие радиальные и обес­печивающие перевод транспортных потоков с одной радиальной ма­гистрали на другую. Они служат также и для транспортной связи между отдельными районами, расположенными в одном поясе города.

Примером такой планировки может служить Москва. Схема ее уличной сети складывалась исторически. Ядром этой сети был Кремль. По мере развития города как столицы Российского государства он окружался городскими постройками и обо­ронительными сооружениями - земляными валами и крепостными стенами. Эти со­оружения и определили появление кольцевых магистралей. В настоящее время чис­ло радиальных магистралей увеличено до 20, а кольцевых до 3. В генеральном плане развития Москвы предполагается увеличение числа кольцевых магистралей до 4, а для улучшения транспортной связи между внешними районами города, где сейчас создаются жилые и лесопарковые районы города,- пробивка 4 хордовых магистра­лей, относящихся к категории скоростных дорог.

Радиально-кольцевая схема улично-дорожной сети города не предусматривает обязательного наличия полностью замкнутых ко­лец. Важно обеспечить перемещение транспортных потоков от од­ной радиальной магистрали к другой по кратчайшему направле­нию - тангенциальному. По такому направлению могут распола­гаться отдельные хорды. Желательно, чтобы они перекрывали друг Друга и обеспечивали связь между всеми радиальными магистраля­ми. Чем ближе к центру города, тем больше потребность в полностью замкнутых кольцах. На периферии города необходимость попереч­ных транспортных связей диктуется главным образом объемом и направлением грузовых перевозок.

Радиально-кольцевая схема уличной сети имеет наименьший коэффициент непрямолинейности - 1,05 - 1,1.


Рис. 1.9. Схемы уличной сети города:

а - свободная; б - прямоугольная; в - прямоугольно-диагональная; г - радиально-кольце­вая

В чистом виде все рассмотренные схемы уличной сети в совре­менных крупных городах встречаются редко. По мере развития го­рода, его транспортной системы планировочная схема улиц все боль­ше приобретает вид сначала радиальной схемы, а затем после стро­ительства обходных дорог по границам города и улиц, опоясываю­щих центр города, радиально-кольцевой. В пределах одного района чаще всего сохраняется прямоугольная схема улиц.

Контрольные вопросы.

    По какому показателю устанавливают крупность города?

    Какие функциональные зоны выделяют на территории современных городов? Что является границами этих зон?

    Какие существуют схемы связи города с внешними дорогами?

4. Как отражается схема улично-дорожной сети города на загрузке и пропуск-ной способности улиц?

5. По какому принципу составлена современная классификация улично-дорож-ной сети города? В определении каких параметров улицы используется расчетная скорость движения?

Существующее положение

Территория проектируемого спортивно-досугового центра расположена в Истринском Муниципальном районе Московской области между деревнями Леоново и Карцево. Транспортная связь территории планируемого размещения спортивно-досугового центра с деревнями и городами Истринского района осуществляется по автомобильной дороге «Волоколамское шоссе – Бужарово – Савельево – Румянцево».

Автомобильные дороги

Автомобильная дорога «Волоколамское шоссе – Бужарово – Савельево - Румянцево» является автомобильной дорогой регионального значения III технической категории. В рассматриваемом районе ширина проезжей части автомобильной дороги составляет 6 м. На проезжую часть нанесена дорожная разметка. В разметке выделено две полосы для движения транспортных средств в обоих направлениях. Искусственное освещение на рассматриваемом участке автомобильной дороги отсутствует.

Проектные предложения

Проектные предложения по транспортному обслуживанию территории спортивно-досугового центра разрабатываются с целью упорядочения и обеспечения безопасного движения транспорта и пешеходов, с целью их транспортного обслуживания и определения мест размещения автомобильных стоянок.

Автомобильные дороги и улицы

Внешние транспортные связи рассматриваемой территории будут осуществляться по автомобильной дороге регионального значения «Волоколамское шоссе – Бужарово – Савельево – Румянцево».

Проектом предусмотрены две планируемые улицы местного значения, для проезда автомобильного транспорта на территорию спортивно-досугового центра. Въезд и выезд на территорию спортивно-досугового центра осуществляется с планируемой улицы местного значения, расположенной севернее рассматриваемой территории. Выезд на автомобильную дорогу «Волоколамское шоссе – Бужарово – Савельево – Румянцево» осуществляется по планируемой улице местного значения расположенной с запада от территории спортивно-досугового центра.

Проектом предусмотрена реконструкция автомобильной дороги «Волоколамское шоссе – Бужарово – Савельево – Румянцево» с сохранением двух полос движения и увеличением проезжей части до 7,00 м. Также предусмотрено устройство обочин по 2,50 м с каждой стороны дороги (0,50 м укрепленная полоса обочины с каждой стороны от дороги). Ширина проезжей части улиц принята равной 8,00 м (4,00 м – ширина полосы движения в каждом направлении с учетом проезда по ней коневозки). Планируемые поперечные профили улиц и автомобильной дороги представлены на листе «Схема организации улично-дорожной сети и движения транспорта» (профили 1-1, 2-2, 3-3).

По автомобильной дороге в районе примыкания к ней улицы местного значения устроены переходно-скоростные полосы. Выезд с планируемой улицы на автомобильную дорогу осуществляется в обоих направлениях движения дороги. Параметры переходно-скоростных полос и радиусов кривых сопряжения автомобильной дороги и планируемой улицы приняты в соответствии со СНиП 2.05.02-85 «Автомобильные дороги» и в дальнейшем могут быть уточнены в соответствии техническими условиями ГУ МО «УАД МО «Мосавтодор».

По автомобильной дороге и улицам планируется нанести соответствующую дорожную разметку и установить соответствующие дорожные знаки с соблюдением ГОСТ Р 52289-2004 «Технические средства организации дорожного движения. Правила применения дорожных знаков, разметки, светофоров, дорожных ограждений и направляющих устройств», ГОСТ Р 51256-99 «Разметка дорожная. Общие технические условия» и ГОСТ Р 52290-2004 «Знаки дорожные. Общие технические условия».

Сеть внутренних проездов

Выезд транспортных средств с территории спортивно-оздоровительного комплекса осуществляется в районе КПП на улицу расположенную севернее рассматриваемой территории. Выезд осуществляется в обоих направлениях движения улицы. Проезд обеспечивает подъезд к административному зданию и автомобильной стоянке рассчитанной на 13 машино-мест. Восточнее примыкания проезда к улице предусмотрен въезд-выезд на открытую автомобильную стоянку, рассчитанную на 68 машино-мест. Минимальная ширина проездов 8,00 м. Радиусы закругления проезжих частей проездов на примыканиях к улице приняты 8,00 м.

Проезды приняты с устройством асфальтобетонного покрытия, закрытой дождевой канализации и установкой бордюрного камня. В темное время суток всю проектируемую внутреннюю сеть проездов предлагается осветить с помощью светильников, установленных на специальных мачтах.

Движение транспорта на примыканиях проездов к улицам регулируется дорожными знаками и дорожной разметкой.

Сооружения и устройства для временного хранения автотранспортных средств

Максимальное единовременное расчетное число посетителей спортивно-оздоровительного комплекса составляет 300 человек. Число работающих постоянно составляет 12 человек, временно – 30 человек. Таким образом, в соответствии с ТСН 30-303-2000 «Планировка и застройка городских и сельских поселений. Московская область» максимальный расчетный парк автомобилей составит 95 единиц. Для посетителей необходимо предусмотреть 90 машино-мест из расчета 30 машино-мест на 100 человек. Для работников 5 машино-мест из расчета 15 машино-мест на 100 работников.

В районе административного здания предусмотрена открытая автомобильная стоянка на 13 машино-мест. Открытая автомобильная стоянка, расположенная восточнее основного въезда, рассчитана на 66 машино-мест и имеет отдельный въезд с улицы. Так же по улице местного значения предусмотрены примыкающие к проезжей части парковочные места на 16 машино-мест.

Таким образом, общая емкость открытых автомобильных стоянок на рассматриваемой территории составляет 95 машино-мест.

Общественный транспорт

По автомобильной дороге «Волоколамское шоссе – Бужарово – Савельево – Румянцево» планируется размещение остановки общественного транспорта южнее территории спортивно-досугового центра в 400 м доступности.

Пешеходное движение

Движение пешеходов планируется организовать по тротуарам вдоль автомобильной дороги, улиц и проездов. Места пересечения пешеходных и транспортных потоков оборудуются пешеходными переходами (соответствующей дорожной разметкой и соответствующими дорожными знаками).

По автомобильной дороге «Волоколамское шоссе – Бужарово – Савельево – Румянцево» предусмотрен тротуар шириной 1,50 м со стороны территории спортивно-досугового центра. Так же тротуар связывает рассматриваемую территорию с остановкой общественного транспорта. По планируемой улице местного значения, расположенной с запада от спортивно-досугового центра, предусмотрены тротуары шириной 1,50 м с обеих сторон от проезжей части. По планируемой улице местного значения, проходящей с севера рассматриваемой территории, предусмотрен тротуар шириной 3,00 м с северной стороны от проезжей части. С восточной стороны спортивно-досугового центра предусмотрен тротуар шириной 3,00 м, связывающий тротуары автомобильной дороги и планируемой улицы местного значения.

Движение по территории спортивно-досугового центра планируется организовать по тротуарам и пешеходным дорожкам шириной 1,5-3 м, также допускается движение пешеходов по проезжей части проездов.

Изучив данную главу, студент должен:

знать

  • положения и теоретические основы формирования улично-дорожной сети городов;
  • нормативные правовые и нормативно-технические документы в области проектирования улично-дорожной сети городов;
  • правила проектирования улично-дорожной сети городов;

уметь

  • обобщать и систематизировать основные документы, регламентирующие проектирование и функционирование улично-дорожной сети городов;
  • решать задачи, связанные с определением параметров улиц и городских дорог;
  • выбирать наиболее рациональные проектные решения по инфраструктуре пешеходного движения и стоянки автомобилей;

владеть

  • навыками работы с нормативной и научной литературой в области проектирования и функционирования улично-дорожной сети городов;
  • навыками решения практических задач по расчету параметров улиц и городских дорог.

Планировочная структура улично-дорожной сети. Ее основные характеристики

Улично-дорожная сеть (УДС) – это комплекс объектов транспортной инфраструктуры, являющихся частью территории поселений и городских округов, ограниченной красными линиями и предназначенной для движения транспортных средств и пешеходов, упорядочения застройки и прокладки инженерных коммуникаций (при соответствующем технико-экономическом обосновании), а также обеспечения транспортных и пешеходных связей территорий поселений и городских округов как составной части их путей сообщения; представляет собой взаимосвязанную систему городских улиц и автомобильных дорог, каждая из которых выполняет свою функцию обеспечения движения его участников и функцию доступа к начальным и конечным точкам движения (объектам тяготения).

Улично-дорожная сеть городов и населенных пунктов состоит из городских дорог, улиц, проспектов, площадей, переулков, проездов набережных, транспортных инженерных сооружений (тоннелей, путепроводов, под- и надземных пешеходных переходов), трамвайных путей, тупиковых улиц, проездов и подъездов, парковок и стоянок.

Планирование развития улично-дорожной сети городов и населенных пунктов, а также размещения городских улиц и дорог должно осуществляться на основании нормативов градостроительного проектирования, правил землепользования и застройки, градостроительных регламентов, видов разрешенного использования земельных участков и объектов капитального строительства, градостроительных планов земельных участков и исходя из размещения элементов планировочной структуры (кварталов, микрорайонов, иных элементов).

Улично-дорожную сеть населенных пунктов следует формировать в виде непрерывной иерархически построенной системы улиц, городских дорог и других ее элементов с учетом функционального назначения улиц и дорог, интенсивности транспортного, велосипедного, пешеходного и прочих видов движения, архитектурно-планировочной организации территории и характера застройки.

К планировочной структуре улично-дорожной сети предъявляется ряд требований.

  • 1. Рациональное размещение различных функциональных городских зон и обеспечение кратчайших связей между отдельными функциональными районами города. В пределах большого города время, затрачиваемое жителями на проезд от места жительства (спальных районов) до места работы (промышленных и административных районов), не должно превышать 45–60 мин.
  • 2. Обеспечение необходимой пропускной способности магистралей и транспортных узлов с разделением движения по скоростям и видам транспорта.
  • 3. Возможность перераспределения транспортных потоков при временных затруднениях на отдельных направлениях и участках.
  • 4. Обеспечение удобных подъездов к объектам внешнего транспорта (аэропортам, автовокзалам) и выездов на загородные автомобильные дороги.
  • 5. Обеспечение безопасного движения транспорта и пешеходов.

Планировочная структура городов складывается с учетом природных условий: рельефа местности, наличия водотоков и климата. Так, например, в северных городах создастся сеть улиц, расположенных по направлению господствующих ветров в зимнее время года, обеспечивающих перенос большей части снега через территорию города. В городах, расположенных на косогоре, создается сеть улиц, направленных сверху вниз, – происходит проветривание города: смог переносится вниз в долину.

Существуют следующие планировочные структуры УДС города (рис. 4.1).

  • 1. Свободная схема характерна для старых городов с неупорядоченной улично-дорожной сетью (рис. 4.1, а). Для нее свойственны узкие, изогнутые в плане улицы с частыми пересечениями, являющиеся серьезным препятствием для организации движения городского транспорта.
  • 2. Радиальная схема встречается в небольших старых городах, которые развивались как торговые центры. Обеспечивает кратчайшие связи периферийных районов с центром (рис. 4.1, б). Она типична и для сети автомобильных дорог, развивающейся вокруг центра города. Главными недостатками такой схемы являются перегруженность центра транзитным движением и затрудненность сообщения между периферийными районами.
  • 3. Радиально-кольцевая схема представляет усовершенствованную радиальную схему с добавлением кольцевых магистралей, которые снимают часть нагрузки с центральной части и обеспечивают связь между периферийными районами в обход центрального транспортного узла (рис. 4.1, в). Характерна для крупных исторически сложившихся городов. В процессе развития города внегородские тракты, сходившиеся в центральном узле, превращаются в радиальные магистрали, а кольцевые магистрали возникают по трассам разобранных крепостных стен и валов, концентрически опоясывавших ранее отдельные части города. Классический пример – Москва.
  • 4. Треугольная схема не получила большого распространения, так как острые углы, образуемые в пунктах пересечения элементов улично-дорожной сети, создают значительные трудности и неудобства при освоении и застройке участков (рис. 4.1, г). Кроме того, треугольная схема не обеспечивает удобных транспортных связей даже в наиболее активных направлениях. Элементы треугольной схемы можно встретить в старых районах Лондона, Парижа, Берна и других городов.
  • 5. Прямоугольная схема получила весьма широкое распространение. Характерна для молодых городов (Одесса, Ростов), развивавшихся по заранее разработанным планам (рис 4.1, д). Имеет такие преимуществ перед другими планировочными структурами:
    • – удобство и легкость ориентирования в процессе движения;
    • – значительная пропускная способность благодаря наличию магистралей-дублеров, рассредоточивающих транспортные потоки;
    • – отсутствие перегрузки центрального транспортного узла.

Недостатком является значительная удаленность противоположно расположенных периферийных районов. В этих случаях вместо движения по гипотенузе транспортный поток направляется по двум катетам.

6. Прямоугольно-диагональная схема является развитием прямоугольной схемы. Обеспечивает кратчайшие связи в наиболее востребованных направлениях. Сохраняя достоинства чисто прямоугольной схемы, освобождает ее от основного недостатка (рис. 4.1, е). Диагональные магистрали упрощают связи периферийных районов между собой и с центром.

Недостаток – наличие транспортных узлов со многими входящими улицами (взаимно перпендикулярные магистрали и диагональная).

7. Комбинированная схема сохраняет достоинства одних схем и устраняет недостатки других. Характерна для крупных и крупнейших исторически сложившихся городов. Представляет собой сочетание названных выше типов схем и, по существу, является наиболее распространенной. Здесь нередко встречаются в центральных зонах свободная, радиальная или радиально-кольцевая структуры, а в новых районах улично-дорожная сеть развивается по прямоугольной или прямоугольно-диагональной схеме.

Рис. 4.1.

а – свободная схема; б – радиальная; в – радиально-кольцевая; г – треугольная; д – прямоугольная; е – прямоугольно-диагональная

В зависимости от планировочной структуры загрузка центра города различная. Наибольшее количество транспортных связей через центр города имеет радиальная сеть, поскольку активно осуществляются перевозки по лучевым улицам в диаметральном направлении. Радиально-кольцевая схема в значительной степени устраняет этот недостаток, поскольку периферийные идут по кольцевым улицам в объезд центра. Лишена этого недостатка и прямоугольная схема, позволяющая рассосредоточить транспортные потоки по параллельным улицам.

УДС характеризуется следующими показателями .

1. Плотность сети улиц и дорог определяется как отношение протяженности дорог к площади территории, км/км2

Иногда используется показатель удельной плотности сети, выраженный в км2 площади проезжей части дорог, деленных на км2 территории города (км2/км2).

По современным нормам средняя плотность магистральных улиц 5 = 2,2-2,4 км/км2 при расстоянии между ними 0,5-1,0 км.

Рациональное расстояние между магистральными улицами, по которым осуществляется движение общественного транспорта, назначается из условия удобства для жителей города, так чтобы расстояние от наиболее удаленной точки места жительства или работы до остановки не превышало 400–500 м.

При одном и том же расстоянии между улицами плотность сети при радиально-кольцевой планировочной структуре в 1,5 раза выше, чем при прямоугольной схеме. Высокая плотность сети обеспечивает минимальную длину пешеходных подходов к магистральным улицам, но имеет такие серьезные недостатки, как высокие капиталовложения в устройство сети и ее эксплуатацию, а также низкие скорости движения транспорта из-за частых перекрестков в одном уровне.

Средняя плотность сети улиц в Санкт-Петербурге 4,0-5,5 км/км2, в том числе плотность сети магистральных улиц и дорог с регулируемым движением – 2,5-3,5 км/км2, плотность сети городских скоростных дорог и магистралей непрерывного движения – 0,4 км/км2.

Плотность УДС в Москве – 4,4 км/км2. В крупных городах мира плотность УДС больше: в Лондоне – 9,3, в Нью-Йорке –12,4, в Париже – 15,0 км/км2.

Существует зависимость между количеством населения в городе и плотностью УДС. В малых городах (с населением 100–250 тыс. жителей) плотность УДС 6 = 1,6-2,2 км/км2, в городах с населением более 2 млн жителей δ = 2,4-3,2 км/км2.

Чем крупнее город, тем большая плотность УДС и большая протяженность улиц приходится на одного жителя. В крупных городах России на одного жителя приходится следующее количество площади УДС, м2: в Москве – 12, в Санкт-Петербурге – 10, в городах США: Нью-Йорке – 32, Лос-Анджелесе – 105.

2. Показатель непрямолинейности характеризуется величиной коэффициента непрямолинейности , равным отношению фактического пути, который автомобиль проходит по УДС из начальной точки А в конечную точку маршрута Б, к воздушному расстоянию между этими точками:

Коэффициент непрямолинейности во многом зависит от планировочной структуры УДС и принятой организации движения (прежде всего объемов применения одностороннего движения).

Коэффициент непрямолинейности изменяется от 1,1 до 1,4. Самый малый коэффициент нелинейности имеет радиально-кольцевая схема, самый большой – прямоугольная.

3. Пропускная способность улично-дорожной сети определяется максимальным количеством автомобилей, проходящих через поперечное сечение в единицу времени – час.

Пропускная способность УДС зависит от уровня загрузки отдельных магистралей, способа регулировки движения на пересечениях, удельного веса магистралей непрерывного движения, состава транспортного потока, состояния покрытия и других причин.

Пропускная способность при одинаковой плотности УДС прямоугольной и прямоугольно-диагональной схем выше других – из-за наличия параллельных улиц-дублеров.

4. Степень сложности пересечений магистралей характеризуется конфигурацией пересечений магистральных улиц.

Наиболее рациональным, как показывает опыт, является пересечение двух магистральных улиц под прямым углом. Наличие в узле пяти и более сходящихся направлений значительно осложняет организацию движения, заставляя использовать кольцевые схемы, требующие значительных площадей, или дорогостоящие развязки в разных уровнях. Пересечения магистральных улиц под острым углом также усложняют организацию движения транспорта и пешеходов.

5. Уровень загрузки центрального транспортного узла зависит от планировочной структуры загрузки центра города.

Наибольшее количество транспортных связей через центр города имеет радиальная сеть, поскольку активно осуществляются перевозки по лучевым улицам в диаметральном направлении. Радиально-кольцевая схема в значительной степени устраняет этот недостаток, поскольку периферийные потоки осуществляются по кольцевым улицам в объезд центра.

Лишена этого недостатка прямоугольная схема, позволяющая рассредоточить транспортные потоки по параллельным улицам.

  • СП 42.13330.2011 "Градостроительство. Планировка и застройка городских и сельских поселений". Актуализированная редакция СНиП 2.07.01–89*.

Основу улично-дорожной сети города - магистральную улично-дорожную сеть составляют магистральные улицы, площади и дороги общегородского и районного значения, по которым осуществляется движение общественного и всех остальных видов транспорта, соединяющие жилые и промышленные районы города между собой и с общегородскими и зональными центрами, с общегородскими объектами административно-общественного, культурного, торгового и спортивного назначения, а также с зонами отдыха, парками и объектами внешне дорожного транспорта (речные порты, аэропорты)

Улично-дорожная сеть складывается постепенно по мере роста города. В старых городах, как правило, улично-дорожная сеть создавалась в течении несколько веков и ее основой послужили направления загородных дорог, соединявших в свое время населенный пункт с внешним миром.

Проектирование магистральной улично-дорожной сети неразрывно связано с проектированием генерального плана города как при создании новых городов или новых районов, так и при реконструкции старых городов. Очевидно, что наиболее рациональные решения могут быть получены при проектировании новых городов.

При разработке генеральных планов реконструкции старых городов зачастую приходиться изменять направления существующих направлений улиц, прокладывать новые улицы, создавать улицы по дублирующим направлениям, и одновременно осуществлять реконструкцию, а не редко снос прилегающей застройке.

В процессе проектирования новых районов больших городов необходимо сочетать приемы застройки свободных территорий с методами реконструкций. Во всех случаях при проектировании магистрально улично-дорожной сети и генерального плана необходимо руководствоваться комплексом требований, основой которых являются минимизация пассажира и грузоперевозок. Это достигается правильным функциональным зонированием городских территорий, обеспечивающим удобства и наименьшие затраты времени по всем видам транспортных связей и в первую очередь на передвижение от жилых районов к местам приложения труда, к предприятиям культурно-бытового обслуживания, к центральному ядру города и к центрам планировочных зон и внутри городского транзитного движения через центр города.

При этом необходимо предусмотреть:

Размещение основных градообразующих пунктов с учетом минимальной загрузки уличной сети грузовым движением путем создания грузовых дорог вне центральных и жилых районов города и такое построение улично-дорожной сети, которое обеспечит необходимую пропускную способность магистралей и транспортных узлов и разделение потоков по скоростным движениям и по видам транспорта;

Трассирование основных магистралей по кратчайшим расстояниям между грузообразующими и пассажирообразующими пунктами.

Кроме того, планировочное решение улично-дорожной сети должно обеспечить высокий уровень безопасности движения транспорта и пешеходов, озеленение улиц и максимальное снижение отрицательного воздействия транспорта на окружающую среду, целесообразное построение системы городского маршрутного транспорта, возможность перераспределения транспортных потоков при возникновении временных затруднений на отдельных направлениях или их участках, а также прокладку инженерных подземных и надземных сетей и сооружений.

Планировочная схема улично-дорожной сети может иметь любое очертание, но очень важно, что бы построение ее было четким и простым, не допускающим взаимного наложение транспортных потоков из-за слияния различных магистралей на отдельных участках, что бы она способствовала распределению транспортных потоков и отвечала всему комплексу предъявляемых к ней требований.

Различают следующие виды планировочной схемы улично-дорожной сети: радиальная, радиально-кольцевая, прямоугольная, прямоугольно-диагональная, треугольная, комбинированная и свободная.


Радиальная схема - наиболее часто встречается в старых городах, которые образовались на пересечении внешних дорог и развивались по направлению связей с другими городами загородными дорогами. При такой схеме хорошо обеспечивается связь районов города с центрам, но неизбежна перегрузка центрально части города и затруднена связь между районами. Такая схема не отвечает требованиям, предъявляемой к современной транспортной системе города.

Радиально-кольцевая - схема представляет собой радиальную схему с добавлением кольцевых магистралей, число которых зависит от размеров города, а расположение определяется транспортными корреспонденциями и местными условиями. Кольцевые магистрали снимают значительную транспортную нагрузку с центральной части города и создают удобные связи между районами, минуя центральное городское ядро. Примером радиально-кольцевой системы является улично-дорожная сеть Москвы. В крупных и крупнейших городах может быть несколько радиально-кольцевых районов вокруг центров планировочных зон города. Такую схему называют многофокусной.

Прямоугольная схема - представляет собой систему взаимного параллельных и перпендикулярных к ним улиц. Обычно она встречается в сравнительно молодых городах, строительство которых велось по заранее разработанным планам. К достоинствам такой схемы относится ее простота, высокая пропускная способность, возможность рассредоточения транспорта параллельным улицам, отсутствие единого транспортного узла. Недостатком прямоугольной схемы является значительное удлинение путей, связывающих диагонально противоположные кварталы и районы города.

Прямоугольно-диагональная схема - представляет собой прямоугольную схему с добавлением диагональных связей. Здесь сохраняются достоинства прямоугольной схемы и смягчаются ее недостатки. Благодаря диагональным магистралям упрощаются связи между периферийными районами между собой и центром. Недостатком схемы является наличие узлов со многими входящими улицами, в том числе под углом, что весьма затрудняет организацию движения транспорта на них и размещение застройки.

Треугольная схема - встречается редко вследствие образования при этом большого числа узлов с пересечением многих магистралей под острым узлом. В некоторых старых районах Лондона и Парижа встречается такое построение улично-дорожной сети.

Комбинированная схема - представляет собой разнообразные комбинации опасных выше геометризированных схем. Она встречается довольно часто в крупных городах, где старые районы города имеют радиально-кольцевую схему, а новые - прямоугольную.

Свободная схема - улично-дорожной сети не содержит элементов описанных выше схем. Она встречается в стихийно развивающихся азиатских и средневековых европейских городах. Такая схема применима в условиях сложного рельефа в городах-курортах или в зонах отдыха.

Для технико-экономической оценки улично-дорожной сети используются следующие показатели: плотность, степень не прямолинейности сообщения, пропускная способность сети, средняя удаленность районов города друг от друга, жилых районов от основных мест приложения труда от центра города или других важнейших центров тяготения всех видов транспорта и пешеходов, степень загрузки транзитными потоками центрального транспортного узла, конфигурация пересечения магистральных улиц.

Плотностью улично-дорожной сети называется отношение суммарной протяженности улиц в км к соответствующей площади территории города и его района в км2.

В общем виде плотность улично-дорожной сети л км(км)2, будет равна:

где, ?L - сумма длин улиц и дорог, км. При определении плотности магистральной улично-дорожной сети?L представляет собой протяженность только магистральных улиц как общегородского, так и районного значения;

F - площадь территории города, обслуживаемая суммой длин улиц и дорог, км2.

При высокой плотности магистральной сети улиц и дорог города или его района достигаются небольшие по протяженности пешеходные подходы, или, как принято называть, подходы в пределах пешеходной доступности к остановкам общественного транспорта. Однако это приводит к частым пересечением магистральных улиц, что снижает скорость сообщения.

Принятые у нас в стране Строительные нормы и правила (ч.2. Нормы проектирования, гл. 60 «Планировка и застройка городов, поселков и сельских населенных пунктов», именуемые для краткости и последующем изложении СН и П 11-60-75*), нормируют среднюю плотность магистральной улично-дорожной сети 2,2 - 2,4 км/км2.

В центральных раинах города плотность улично-дорожной сети может быть увеличена до 3,5 -4 км/км2, а в периферийных районах уменьшена до1,5-2 км/км2, но не менее такой плотности, при которой дальность пешеходных подходов до ближайшей остановки общественного транспорта не превышает 500 м(включая длину пути пешехода по территории микрорайона) и уменьшается до 300 м в климатических подрайонах IA, IБ, IIA, и до 400 м в IV климатическом районе.

Степень не прямолинейности - улично-дорожной сети определяется отношением суммы расстояний между основными пунктами города по уличной сети к сумме расстояний между теми же пунктами по воздушным прямым линиям. Для характеристики этого показателя служит коэффициент не прямолинейности.

где, ?Lф - сумма фактических расстояний между основными пунктами города, измеренных по всей сети магистральных улиц; ?Lв - сумма расстояний между теми же пунктами, измеренных по воздушным прямым линиям.

Более исчерпывающую характеристику степени не прямолинейности улично-дорожной сети города получают с учетом средних расстояний удалённости.

Средняя практическая удаленность определяется по формуле:

L ф. Ср =?L ф /n

Где, n - число корреспонденций (т. е. количество пар пунктов, между которыми измеряется средняя удаленность); =?Lф - сумма фактических расстояний между этими пунктами, измеренных по улично-дорожной сети.

Среднее расстояние между этими пактами, измеренное по воздушным линиям, будет равно:

L в.ср = ?Lв/n

С учетом средней удаленности коэффициент не прямолинейности определяется из выражения:

л = L ф. Ср / L в.ср

Для оценки улично-дорожной сети по коэффициенту не прямолинейности следует пользоваться следующими данными, предложенными А. Е. Страментовым:

Таблица

Рекомендуется проектировать улично-дорожные сети со степенью не прямолинейности от очень малой до высокой. При очень высоких и исключительно высоких значениях необходимо снижать не прямолинейность путем уплотнения улично-дорожной сети, спрямления отдельных важных направлений, введения диагональных направлений.

Наименьшим коэффициентом не прямолинейности 1,00-1,10 обладает радиально-кольцевая схема улично-дорожной сети, при прямоугольно-диагональной схеме он может колебаться в пределах 1,11 - 1,20, а при прямоугольно схеме - от 1,25 до 1,30

Средняя удаленность жилых районов от мест приложения труда, от центра города или от других каких-либо взаимно корреспондирующих пунктов, определяется не просто как средняя арифметическая величина, а как среде взвешенная вылечена с учетом численности населения в тех или иных зонах города.

Для определения средней удаленности между двумя пунктами города (например, от жилых районов до промышленной зоны или жилых районов до центра города) на плане города наносятся концентрические окружности на расстоянии одного километра одна от другой, определяется средняя удаленность, и устанавливается количество населения в каждой километрической зоне.

Средняя удаленность Lуп км, при этом будет

Lуп = H н1 L н1 + H н2 L н2 +…..+ H нn L нn /H

где H н1 H н ….. H нn численность населения каждой километрической зоны

L н1 L н2 …..L нn - средняя удаленность каждой километрической зоны от рассматриваемого промышленной зоны центра города

Н - численность населения города

Среднее время сообщения более точно характеризует улично-дорожную сеть города, чем средняя удаленность, особенно для больших городов.

Среднее время сообщения между различными пунктами города определяется так же, как средневзвешенная величина с учетом характера расселения, и находится из выражения:

Т уп = H н1 Т н1 + H н2 Т н2 +…..+ H нn Т нn /H

где - Т н1 Т н2 …..Т нn среднее время сообщения до каждой зоны мин

В целом улично-дорожная сеть города должна быть запроектирована таким образом, чтобы суммарные затраты времени на передвижение в один конец от места жительства до мест приложения труда для 80-90% населения не превышали 40 мин в крупных и крупнейших городах. Норматив этот сохраняется и для других городов, где место приложения труда находится на значительном расстоянии от жилых районов, как, например, при вредной по санитарным требованиям промышленности, размещаемой с большой защитой зоной разрыва. В остальных городах и населенных местах время сообщения между селитебными районами и местами приложения труда не должно превышать 30 мин.

Проектирование планировочной структуры города, его транспортных систем и улично-дорожной сети можно разделить на три этапа. На первом этапе решаются главные задачи - функциональное зонирование городской территории, размещение наиболее важных объектов, направление главных связей и ориентация и плотность магистральной сети; на втором этапе - размещение объектов второстепенного значения и разветвление сети. Главнейшей задачей при проектировании улично-дорожной сети является разработка такого варианта, при котором с учетом всей суммы разнообразных требований будет обеспечен высокий уровень транспортного обслуживания населения при минимальных суммарных капитальных вложений в транспортное строительство.