Поражение людей при действии светового излучения. Световое излучение Поражающее действие светового излучения

При наземном ядерном взрыве около 50 % энергии идёт на образование ударной волны и воронки в земле, 30- 40 % в световое излучение, до 5 % на проникающую радиацию и электромагнитное излучение и до 15 % в радиоактивное заражение местности.

При воздушном взрыве нейтронного боеприпаса доли энергии распределяются своеобразно: ударная волна до 10 %, световое излучение 5 - 8 % и примерно 85 % энергии уходит в проникающую радиацию (нейтронное и гамма-излучения)

Ударная волна и световое излучение аналогичны поражающим факторам традиционных взрывчатых веществ, но световое излучение в случае ядерного взрыва значительно мощнее.

Ударная волна разрушает строения и технику, травмирует людей и оказывает отбрасывающее действие быстрым перепадом давления и скоростным напором воздуха. Последующие за волной разрежение (падение давления воздуха) и обратный ход воздушных масс в сторону развивающегося ядерного гриба также могут нанести некоторые повреждения.

Световое излучение действует только на неэкранированные, то есть ничем не прикрытые от взрыва объекты, может вызвать воспламенение горючих материалов и пожары, а также ожоги и поражение зрения человека и животных.

Проникающая радиация оказывает ионизирующее и разрушающее воздействие на молекулы тканей человека, вызывает лучевую болезнь . Особенно большое значение имеет при взрыве нейтронного боеприпаса . От проникающей радиации могут защитить подвалы многоэтажных каменных и железобетонных зданий, подземные убежища с заглублением от 2-х метров (погреб, например или любое укрытие 3-4 класса и выше), некоторой защитой обладает бронированная техника.

Радиоактивное заражение - при воздушном взрыве относительно «чистых» термоядерных зарядов (деление-синтез) этот поражающий фактор сведён к минимуму. И наоборот, в случае взрыва «грязных» вариантов термоядерных зарядов, устроенных по принципу деление-синтез-деление, наземного, заглублённого взрыва, при которых происходит нейтронная активация содержащихся в грунте веществ, а тем более взрыва так называемой «грязной бомбы » может иметь решающее значение.

Электромагнитный импульс выводит из строя электрическую и электронную аппаратуру, нарушает радиосвязь .

В зависимости от типа заряда и условий взрыва энергия взрыва распределяется по-разному. Например, при взрыве обычного ядерного заряда без повышенного выхода нейтронного излучения или радиоактивного загрязнения может быть следующее соотношение долей энергетического выхода на различных высотах :

Доли энергии воздействующих факторов ядерного взрыва
Высота / Глубина Рентгеновское излучение Световое излучение Теплота огненного шара и облака Ударная волна в воздухе Деформация и выброс грунта Волна сжатия в грунте Теплота полости в земле Проникающая радиация Радиоактивные вещества
100 км 64 % 24 % 6 % 6 %
70 км 49 % 38 % 1 % 6 % 6 %
45 км 1 % 73 % 13 % 1 % 6 % 6 %
20 км 40 % 17 % 31 % 6 % 6 %
5 км 38 % 16 % 34 % 6 % 6 %
0 м 34 % 19 % 34 % 1 % менее 1 % ? 5 % 6 %
Глубина камуфлетного взрыва 30 % 30 % 34 % 6 %

Энциклопедичный YouTube

  • 1 / 5

    Световое излучение - это поток лучистой энергии, включающий ультрафиолетовую , видимую и инфракрасную области спектра . Источником светового излучения является светящаяся область взрыва - нагретые до высоких температур и испарившиеся части боеприпаса, окружающего грунта и воздуха. При воздушном взрыве светящаяся область представляет собой шар , при наземном - полусферу.

    Максимальная температура поверхности светящейся области составляет обычно 5700-7700 °C. Когда температура снижается до 1700 °C, свечение прекращается. Световой импульс продолжается от долей секунды до нескольких десятков секунд, в зависимости от мощности и условий взрыва. Приближенно, продолжительность свечения в секундах равна корню третьей степени из мощности взрыва в килотоннах. При этом интенсивность излучения может превышать 1000 Вт/см² (для сравнения - максимальная интенсивность солнечного света 0,14 Вт/см²).

    Результатом действия светового излучения может быть воспламенение и возгорание предметов, оплавление, обугливание, большие температурные напряжения в материалах.

    При воздействии светового излучения на человека возникает поражение глаз и ожоги открытых участков тела, а также может возникнуть поражение и защищенных одеждой участков тела.

    Защитой от воздействия светового излучения может служить произвольная непрозрачная преграда.

    В случае наличия тумана, дымки, сильной запыленности и/или задымленности воздействие светового излучения также снижается.

    Ударная волна

    Большая часть разрушений, причиняемых ядерным взрывом, вызывается действием ударной волны. Ударная волна представляет собой скачок уплотнения в среде, который движется со сверхзвуковой скоростью (более 350 м/с для атмосферы). При атмосферном взрыве скачок уплотнения - это небольшая зона, в которой происходит почти мгновенное увеличение температуры , давления и плотности воздуха. Непосредственно за фронтом ударной волны происходит снижение давления и плотности воздуха, от небольшого понижения далеко от центра взрыва и почти до вакуума внутри огненной сферы. Следствием этого снижения является обратный ход воздуха и сильный ветер вдоль поверхности со скоростями до 100 км/час и более к эпицентру. Ударная волна разрушает здания, сооружения и поражает незащищенных людей, а близко к эпицентру наземного или очень низкого воздушного взрыва порождает мощные сейсмические колебания, способные разрушить или повредить подземные сооружения и коммуникации, травмировать находящихся в них людей.

    Большинство зданий, кроме специально укрепленных, серьёзно повреждаются или разрушаются под воздействием избыточного давления 2160-3600 кг/м² (0,22-0,36 атм).

    Энергия распределяется по всему пройденному расстоянию, из-за этого сила воздействия ударной волны уменьшается пропорционально кубу расстояния от эпицентра.

    Защитой от ударной волны для человека являются убежища . На открытой местности действие ударной волны снижается различными углублениями, препятствиями, складками местности.

    Проникающая радиация

    Электромагнитный импульс

    При ядерном взрыве в результате сильных токов в ионизированном радиацией и световым излучением в воздухе возникает сильнейшее переменное электромагнитное поле, называемое электромагнитным импульсом (ЭМИ). Хотя оно и не оказывает никакого влияния на человека, воздействие ЭМИ повреждает электронную аппаратуру, электроприборы и линии электропередач. Помимо этого большое количество ионов , возникшее после взрыва, препятствует распространению радиоволн и работе радиолокационных станций . Этот эффект может быть использован для ослепления системы предупреждения о ракетном нападении .

    Сила ЭМИ меняется в зависимости от высоты взрыва: в диапазоне ниже 4 км он относительно слаб, сильнее при взрыве 4-30 км, и особенно силён при высоте подрыва более 30 км (см., например, эксперимент по высотному подрыву ядерного заряда Starfish Prime).

    Возникновение ЭМИ происходит следующим образом:

    1. Проникающая радиация, исходящая из центра взрыва, проходит через протяженные проводящие предметы.
    2. Гамма-кванты рассеиваются на свободных электронах , что приводит к появлению быстро изменяющегося токового импульса в проводниках.
    3. Вызванное токовым импульсом поле излучается в окружающее пространство и распространяется со скоростью света, со временем искажаясь и затухая.

    Под воздействием ЭМИ во всех неэкранированных протяжённых проводниках индуцируется напряжение, и чем длиннее проводник, тем выше напряжение. Это приводит к пробоям изоляции и выходу из строя электроприборов связанных с кабельными сетями, например, трансформаторные подстанции и т. д.

    Большое значение ЭМИ имеет при высотном взрыве до 100 км и более. При взрыве в приземном слое атмосферы не оказывает решающего поражения малочувствительной электротехники, его радиус действия перекрывается другими поражающими факторами. Но зато оно может нарушить работу и вывести из строя чувствительную электроаппаратуру и радиотехнику на значительных расстояниях - вплоть до нескольких десятков километров от эпицентра мощного взрыва, где прочие факторы уже не приносят разрушающий эффект. Может вывести из строя незащищённую аппаратуру в прочных сооружениях, рассчитанных на большие нагрузки от ядерного взрыва (например ШПУ). На людей поражающего действия не оказывает .

    Радиоактивное заражение

    Радиоактивное заражение - результат выпадения из поднятого в воздух облака значительного количества радиоактивных веществ. Три основных источника радиоактивных веществ в зоне взрыва - продукты деления ядерного горючего, не вступившая в реакцию часть ядерного заряда и радиоактивные изотопы, образовавшиеся в грунте и других материалах под воздействием нейтронов (наведенная радиоактивность).

    Оседая на поверхность земли по направлению движения облака, продукты взрыва создают радиоактивный участок, называемый радиоактивным следом. Плотность заражения в районе взрыва и по следу движения радиоактивного облака убывает по мере удаления от центра взрыва. Форма следа может быть самой разнообразной, в зависимости от окружающих условий.

    Радиоактивные продукты взрыва испускают три вида излучения: альфа , бета и гамма . Время их воздействия на окружающую среду весьма продолжительно.

    В связи с естественным процессом распада радиоактивность уменьшается, особенно резко это происходит в первые часы после взрыва.

    Поражение людей и животных воздействием радиационного заражения может вызываться внешним и внутренним облучением. Тяжелые случаи могут сопровождаться лучевой болезнью и летальным исходом.

    Установка на боевую часть ядерного заряда оболочки из кобальта вызывает заражение территории опасным изотопом 60 Co (гипотетическая грязная бомба).

    Эпидемиологическая и экологическая обстановка

    Ядерный взрыв в населённом пункте, как и другие катастрофы, связанные с большим количеством жертв, разрушением вредных производств и пожарами, приведёт к тяжёлым условиям в районе его действия, что будет вторичным поражающим фактором. Люди, даже не получившие значительных поражений непосредственно от взрыва, с большой вероятностью могут погибнуть от инфекционных заболеваний и химических отравлений. Велика вероятность сгореть в пожарах или просто расшибиться при попытке выйти из завалов.

    Психологическое воздействие

    Люди, оказавшиеся в районе действия взрыва, кроме физических повреждений, испытывают мощное психологическое угнетающее воздействие от устрашающего вида разворачивающейся картины ядерного взрыва, катастрофичности разрушений и пожаров, исчезновения привычного ландшафта, множества изувеченных, обугленных умирающих вокруг и разлагающихся трупов из-за невозможности их захоронения, гибели родных и близких, осознания причинённого вреда своему организму и ужаса наступающей смерти от развивающейся лучевой болезни . Результатом такого воздействия среди выживших после катастрофы явится развитие острых психозов , а также клаустрофобных синдромов из-за осознания невозможности выйти на поверхность земли, устойчивых кошмарных воспоминаний, влияющие на все последующее существование. В Японии есть отдельное слово, обозначающее людей, ставших жертвами ядерных бомбардировок - «Хибакуся ».

    Государственные спецслужбы многих стран предполагают [ ] , что одной из целей различных террористических группировок может являться завладение ядерным оружием и применение его против мирного населения с целью психологического воздействия, даже если физические поражающие факторы ядерного взрыва будут незначительны в масштабах страны-жертвы и всего человечества. Сообщение о ядерном теракте будет немедленно распространено средствами массовой информации (телевидение, радио, интернет, пресса) и несомненно окажет огромное психологическое воздействие на людей, на что могут рассчитывать террористы.

    Вопрос № 4. Перечислить поражающие факторы ядерного взрыва. Определение понятия «ударная волна». Воздействия ударной волны на людей.

    К поражающим факторам ядерного взрыва относятся: ударная волна, световое излучение, проникающая радиация (ионизирующее излучение), радиоактивное загрязнение местности, электромагнитный импульс и сейсмические (гравитационные) волны.

    Ударная волна - наиболее мощный поражающий фактор ядерного взрыва. На ее образование при взрывах боеприпасов среднего и крупного калибров расходуется около 50% всей энергии взрыва. Она представляет собой зону резкого сжатия воздуха, распространяющегося во все стороны от центра взрыва со сверхзвуковой скоростью. С увеличением расстояния скорость быстро падает, а волна ослабевает. Источником возникновения ударной волны является высокое давление в центре взрыва, достигающее миллиардов атмосфер. Наибольшее давление возникает на передней границе зоны сжатия, которую принято называть фронтом ударной волны.

    Поражающее действие ударной волны определяется избыточным давлением, то есть разностью между нормальным атмосферным давлением и максимальным давлением во фронте ударной волны. Оно измеряется в килопаскалях (кПа) или килограммах - силы на 1 см² (кгс/см²).

    Ударная волна может нанести незащищенным людям травматические поражения, контузии или быть причиной их гибели. Поражения могут быть непосредственными или косвенными.

    Непосредственное поражение ударной волной возникает в результате воздействия избыточного давления и скорости напора воздуха, то есть появляется зона сжатия, за которой следует зона разряжения. Ввиду небольших размеров тела человека ударная волна почти мгновенно охватывает его и подвергает сильному сжатию.

    Косвенные поражения люди могут получить в результате ударов обломками разрушенных зданий и сооружений, осколками стекла, камнями, деревьями и другими предметами, летящими с большой скоростью.

    Воздействуя на людей, ударная волна вызывает травмы различной тяжести:

    Ø легкие поражения возникают при избыточном давлении 20–40 кПа (0,2–0,4 кгс/см²). Они характеризуются скоропреходящими нарушениями функций организма (звон в ушах, головокружение, головная боль), возможны вывихи, ушибы;

    Ø поражения средней тяжести возникают при избыточном давлении 40–60 кПа (0,4-0,6 кгс/см²). При этом могут быть контузии, повреждения органов слуха, кровотечения из ушей и носа, переломы и вывихи;

    Ø тяжелые поражения возможны при избыточном давлении 60–100 кПа (0,6–1,0 кгс/см²). Они характеризуются сильными контузиями всего организма, потерей сознания, множественными травмами, переломами, кровотечениями из носа, ушей; возможны повреждения внутренних органов и внутренние кровотечения;


    Ø крайне тяжелые поражения возникают при избыточном давлении более 100 кПа (1 кгс/см²).

    Отмечаются разрывы внутренних органов, переломы, внутренние кровотечения, сотрясение мозга, длительная потеря сознания. Разрывы наблюдаются в органах, содержащих большое количество крови (печень, селезенка, почки), наполненных жидкостью (желудочки головного мозга, мочевой и желчный пузырь). Эти травмы могут привести к смертельному исходу.

    Световое излучение представляет собой поток видимых инфракрасных и ультрафиолетовых лучей, исходящих от светящейся области, состоящей из продуктов ядерного взрыва и воздуха, разогретых до нескольких тысяч градусов. На его образование расходуется 30–35% всей энергии взрыва боеприпасов среднего калибра. Продолжительность светового излучения зависит от мощности и вида взрыва и может продолжаться до десяти секунд.

    Наибольшим поражающим действием обладает инфракрасное излучение. Основным параметром, характеризующим световое излучение, является световой импульс, то есть количество световой энергии, падающей на 1 см 2 (1 м 2) поверхности перпендикулярно направлению распространения светового излучения за время свечения. Световой импульс измеряется в калориях на 1 см 2 (кал/см) или килоджоулях на 1 м 2 (кДж/м 2) поверхности.Световое излучение ядерного взрыва при непосредственном воздействии вызывает ожоги. Возможны вторичные ожоги, возникающие от пламени горящих зданий, сооружений, растительности.

    Световое излучение поглощается непрозрачными материалами, и может вызывать массовые возгорания зданий и материалов, а так же ожоги кожи и поражение глаз.

    Световое излучение ЯВпредставляет собой поток лучистой энергии в ультрафиолетовой, видимой и инфракрасной областях спектра электромагнитных волн .

    Оно возникает сразу после взрыва совместно с образованием светящейся области гомотермического шара и распространяется со скоростью 3·10 5 км/с. Вследствие этого, время, необходимое для прохождения лучистого потока от точки взрыва до объектов, находящихся даже на расстоянии десятков километров от места взрыва, практически равно нулю.

    Световое излучение для ядерных взрывов мощностью более 10 кт, по сравнению с ударной волной и проникающей радиацией, имеет больший радиус поражения открыто расположенного личного состава и различных легко возгораемых объектов.

    Источником светового излучения является светящаяся область ЯВ. Форма светящейся области зависит от вида взрыва, при высоком воздушном взрыве она близка к сферической. Светящаяся область низкого воздушного взрыва, деформируясь ударной волной, отраженной от поверхности земли, принимает вид сферического сегмента. При наземном взрыве светящаяся область соприкасается с поверхностью земли и имеет форму полусферы, радиус которой в 1,2…1,3 раза больше радиуса огненного шара воздушного взрыва той же мощности.

    Основным параметром, характеризующим эффективность поражающего действия светового излучения на различных расстояниях от центра ядерного взрыва, является световой импульс.

    Световым импульсом U называется количество энергии прямого светового излучения, приходящееся на 1 м 2 неподвижной и неэкранированной поверхности, расположенной перпендикулярно к направлению распространения светового потока, за все время излучения. Измеряется световой импульс в Дж/м 2 .

    Величина светового импульса зависит от тротилового эквивалента взрыва, вида взрыва, расстояния и прозрачности атмосферы.

    Световое излучение ослабляется вследствие поглощения и рассеяния его в атмосфере. С увеличением запыленности и влажности воздуха, характеризующейся появлением дымки, ослабление светового излучения усиливается. Коэффициент ослабления зависит также от высоты взрыва Н и высоты облучаемого объекта, H o над уровнем моря.

    При взрыве над облаками излучение, идущее в направлении земли, будет ослаблено и как поражающий фактор его практически можно не учитывать. Причем, это явление обусловлено главным образом отражением светового излучения от облаков.

    При взрыве под облаками облучение наземных объектов усиливается в результате отражения светового излучения от облаков. В пасмурную погоду при взрыве под облаками увеличение импульса облучения для наземных объектов может достигать пятидесяти процентов от импульса прямого излучения, в таких случаях световое излучение огненного шара действует иногда на объекты, которые закрыты от прямого светового потока.

    У личного состава световое излучение ядерного взрыва может вызвать ожоги кожи и поражения глаз. Поражающее действие светового излучения определяется количеством поглощенной энергии. Энергия, поглощенная объектом, нагревает облучаемую поверхность. Поэтому основным видом поражений световым излучением являются тепловые поражения, которые характеризуются: степенью ожога,определяемого глубиной термического повреждения кожи и степенью тяжести термического поражения, зависящего от глубины и площади ожога, а также от его локализации.

    По внешнему виду ожоги от светового излучения не отличаются от обычных ожогов пламенем. Различают четыре степени ожогов и четыре степени тяжести термических поражений человека. Например, обширные по площади ожоги даже I степени могут привести к потере боеспособности, в то время как при более сильном, но ограниченном по площади ожоге пострадавшие после оказания им медицинской помощи могут быть возвращены в строй. С увеличением площади ожога тяжесть термического поражения возрастает.

    Световое излучение ядерного взрыва представляет собой электромагнитное излучение оптического диапазона в видимой, ультрафиолетовой и инфракрасной областях спектра.
    В зоне, где обычно рассматривается поражающее действие СИЯВ, оно заключено в спектральном интервале 0,3-3 мкм и включает: ультрафиолетовую 0,3-0,4 мкм; видимую 0,4 -0,8 мкм; инфракрасную 0,8-3 мкм области спектра.
    Таким образом, СИЯВ является по своей природе тепловым и приводит к изменению температурного состояния облучаемых объектов.
    Энергия СИЯВ поглощается поверхностями освещаемых тел, которые при этом нагреваются. Температура нагрева зависит от
    193
    многих факторов и может приводить к обугливанию, оплавлению и воспламенению поверхностей объектов.
    Источником СИЯВ является светящаяся область взрыва, состоящая из нагретых до высокой температуры паров материалов ядерного боеприпаса и воздуха, а при наземных взрывах - и испарившегося грунта.
    На долю СИЯВ приходится 30-40 % всей энергии ядерного взрыва. На открытой местности световое излучение обладает большим радиусом действия по сравнению с ударной волной и приникающей радиацией.
    Основными параметрами СИЯВ являются: Е кал - часть полной энергии взрыва, приходящейся на СИЯВ;
    -Uc , кал/см2 - световой импульс (количество энергии СИЯВ,
    падающей за все время излучения на единицу площади поверхности, расположенной перпендикулярно к направлению прямого излучения). Величина светового импульса примерно прямо пропорциональна мощности взрыва, обратно пропорциональна квадрату расстоянию от центра взрыва, а также зависит от вида взрыва, степени прозрачности атмосферы; U, кал/см2 - импульс облучения (количество энергии СИЯВ, падающей за все время излучения на единицу площади облучаемой поверхности). Если условия облучения неизвестны, полагают U = Uc; Е, кал/см 2с - облученность (количество энергии СИЯВ, падающей; в единицу времени на единицу площади облучаемой поверхности);
    -Ujj кал/см2 - поражающий импульс (импульс облучения, при котором с заданной вероятностью наблюдается опасное поражение материала (объекта), приводящее к потере функциональных свойств).
    Световое излучение при воздействии на людей может вызывать ожоги открытых и защищенных одеждой участков тела, а также поражение глаз. Ожоги могут возникать как непосредственно от излучения, так и от пламени, возникшего при возгорании от светового излучения различных материалов.
    СИЯВ в первую очередь, воздействует на открытые участки тела (кисти рук, шею, лицо) и на глаза. Различают четыре степени ожогов:
    194 первой степени (поверхностное поражение кожи, ее покраснение); второй степени (образование пузырей); третьей степени (омертвение глубоких слоев кожи); четвертой степени (обугливание кожи, подкожной клетчатки, а иногда и более глубоких тканей).
    Ожог первой степени характеризуется болезненной краснотой и небольшой отечностью кожи, второй - образованием пузырей, заполненных прозрачной жидкостью, третьей - омертвлением кожи, четвертой - омертвлением (обугливанием) кожи и более глубоко лежащих тканей.
    Термические поражения I степени тяжести (легкое поражение) характеризуется, как правило, благоприятным исходом, но вызывают утрату бое- или трудоспособности немедленно.
    Термические поражения 2 степени (средней) тяжести - до 5% случаев могут заканчиваться смертельным исходом, а 3 (тяжелой) степени - 20-30%.
    Термические поражения 4 степени (крайне тяжелой), как правило, заканчиваются смертельным исходом.
    СИЯВ вызывает следующие виды повреждения органов зрения: ожоги век и переднего отдела глаз, ожоги глазного дна, временное ослепление.
    Поражение век происходит при тех же поражающих импульсах, что и ожоги открытых участков кожи.
    Ожоги переднего отдела глаза возникают при меньших световых импульсах, при этом принято выделять ожоги четырех степеней тяжести коньюктивы, роговицы и радужную оболочку глаз.
    Ожоги глазного дна возможны, когда взгляд человека направлен в сторону взрыва. Вероятность того, это человек будет смотреть на светящуюся область невелика в реальной обстановке. Поэтому поражение людей будет определяться ожогами век и переднего отдела глаз, при этом возможно одновременное поражение структур глаз, набор которых позволит выявить степень тяжести и исход заболевания.
    Временное ослепление проявляется в обратимых нарушениях основных зрительных функций, наступающих при внезапном изменении яркости поля зрения. Временное ослепление возникает обычно ночью
    195
    или в сумерки и не зависит от ориентации взгляда в момент ослепления. Продолжительность временного ослепления может быть: ночью - от нескольких секунд до 15-30 минут; в сумерки - от нескольких секунд до 5 минут; при поражающем импульсе 10-4 - 10-2 кал/см2.
    Степень воздействия светового излучения на здания, сооружения, технику и т.д. зависит от свойств их конструктивных материалов. Степень (тяжесть) поражения световым излучением характеризуется различно в зависимости от особенностей объекта. Поражения горючих материалов и растительности характеризуют обугливанием, тлением, воспламенением, горением; негорючих материалов - величинами деформации, потерей прочности (или других свойств, определяющих функционирование объектов), видом структурных изменений материала или фазовых превращений. Оплавление, обугливание и воспламенение материалов в одном месте могут привести к возникновению пожаров.
    В населенных пунктах пожары возникают в результате действия светового излучения и вторичных причин (разрушения нагревательных приборов, емкостей и трубопроводов с
    легковоспламеняющимися или взрывоопасными жидкостями и газами, короткого замыкания электрических цепей и т.п.), являющихся следствием разрушения зданий и сооружений.
    В лесу и массивах сухой растительности пожары возникают только в результате воздействия светового излучения и только в пожароопасный сезон (для лесов средней полосы - с апреля по октябрь).
    Вероятность возникновения пожаров в лесу и их продолжительность зависят от характера напочвенного слоя и захламленности леса.
    Пожары в лесных завалах могут продолжаться до 12-18 часов, в населенных пунктах: в зонах слабых и средних разрушений зданий - до 6-12 часов, в зонах завалов - до 1 суток.
    Необходимо отметить еще один очень важный аспект возможных последствий применения ядерного оружия по городам. В современных городах сосредоточено огромное количество горючих материалов (по некоторым расчетам, 10-40 г на квадратный сантиметр площади), и не просто горючих, а способных образовать ги-
    196
    гантские массы сажи и других темных продуктов сгорания: пластики, нефть в нефтехранилищах и т.п. Высокая этажность современных городов создает идеальные условия для подсоса воздуха и возникновения «огненного шторма». Расчеты показывают, что если в результате «огненного шторма» сгорит крупный город с населением в несколько миллионов человек,то прозрачность атмосферы на достаточно большой площади понизится в 10 млн. раз.
    Защита людей от светового излучения обеспечивается их укрытием в защитных сооружениях гражданской обороны, транспортных средствах, использованием экранирующих свойств траншей, оврагов, насыпей, стен и др.
    Защита объектов обеспечивается: повышением отражательной способности материалов (побелка мелом, покраска светлыми красками); повышением стойкости к воздействию светового излучения (обмазка глиной, обсыпка грунтом, снегом, пропитка древесины и тканей огнестойкими составами); проведением противопожарных мероприятий (удаление сухой травы, вырубка просек и устройство заградительных полос).

    На начальных стадиях существования ударной волны ее фронт представляет собой сферу с центром в точке взрыва. После того как фронт достигает поверхности, образуется отраженная волна. Так как отраженная волна распространяется в среде, через которую прошла прямая волна, скорость ее распространения оказывается несколько выше. В результате, на некотором расстоянии от эпицентра две волны сливаются возле поверхности, образуя фронт, характеризуемый примерно в два раза большими значениями избыточного давления.

    Так, при взрыве 20-килотонного ядерного боеприпаса ударная волна за 2 секунды проходит 1000 м, за 5 секунд – 2000 м, за 8 сек – 3000 м. Передняя граница волны называется фронтом ударной волны. Степень поражения УВ зависит от мощности и положения на ней объектов. Поражающее действие УВ характеризуется величиной избыточного давления.

    Поскольку для взрыва данной мощности расстояние, на котором образуется подобный фронт, зависит от высоты взрыва, высоту взрыва можно подобрать для получения максимальных значений избыточного давления на определенной площади. Если целью взрыва является уничтожение укрепленных военных объектов, оптимальная высота взрыва оказывается очень малой, что неизбежно приводит к образованию значительного количества радиоактивных осадков.

    Световое излучение

    Световое излучение - это поток лучистой энергии, включающий ультрафиолетовую, видимую и инфракрасную области спектра. Источником светового излучения является светящаяся область взрыва - нагретые до высоких температур и испарившиеся части боеприпаса, окружающего грунта и воздуха. При воздушном взрыве светящаяся область представляет собой шар, при наземном - полусферу.

    Максимальная температура поверхности светящейся области составляет обычно 5700-7700 °С. Когда температура снижается до 1700°C, свечение прекращается. Световой импульс продолжается от долей секунды до нескольких десятков секунд, в зависимости от мощности и условий взрыва. Приближенно, продолжительность свечения в секундах равна корню третьей степени из мощности взрыва в килотоннах. При этом интенсивность излучения может превышать 1000 Вт/смІ (для сравнения - максимальная интенсивность солнечного света 0,14 Вт/смІ).

    Результатом действия светового излучения может быть воспламенение и возгорание предметов, оплавление, обугливание, большие температурные напряжения в материалах.

    При воздействии светового излучения на человека возникает поражение глаз и ожоги открытых участков тела и временное ослепление, а также может возникнуть поражение и защищенных одеждой участков тела.

    Ожоги возникают от непосредственного воздействия светового излучения на открытые участки кожи (первичные ожоги), а также от горящей одежды, в очагах пожаров (вторичные ожоги). В зависимости от тяжести поражения ожоги делятся на четыре степени: первая - покраснение, припухлость и болезненность кожи; вторая - образование пузырей; третья - омертвление кожных покровов и тканей; четвертая - обугливание кожи.

    Ожоги глазного дна (при прямом взгляде на взрыв) возможны на расстояниях, превышающих радиусы зон ожогов кожи. Временное ослепление возникает обычно ночью и в сумерки и не зависит от направления взгляда в момент взрыва и будет носить массовый характер. Днем оно возникает лишь при взгляде на взрыв. Временное ослепление проходит быстро, не оставляет последствий, и медицинская помощь обычно не требуется.

    Проникающая радиация

    Еще одним поражающим фактором ядерного оружия является проникающая радиация, представляющая собой поток высокоэнергетичных нейтронов и гамма-квантов, образующихся как непосредственно в ходе взрыва так и в результате распада продуктов деления. Наряду с нейтронами и гамма-квантами, в ходе ядерных реакций образуются также альфа- и бета-частицы, влияние которых можно не учитывать из-за того что они очень эффективно задерживаются на расстояниях порядка нескольких метров. Нейтроны и гамма-кванты продолжают выделяться в течение достаточно длительного времени после взрыва, оказывая воздействие на радиационную обстановку. К собственно проникающей радиации обычно относят нейтроны и гамма-кванты появляющиеся в течение первой минуты после взрыва. Подобное определение связано с тем, что за время порядка одной минуты облако взрыва успевает подняться на высоту, достаточную для того, чтобы радиационный поток на поверхности стал практически незаметен.

    Интенсивность потока проникающей радиации и расстояние на котором ее действие может нанести существенный ущерб, зависят от мощности взрывного устройства и его конструкции. Доза радиации, полученная на расстоянии около 3 км от эпицентра термоядерного взрыва мощностью 1 Мт достаточна для того чтобы вызвать серьезные биологические изменения в организме человека. Ядерное взрывное устройство может быть специально сконструировано таким образом, чтобы увеличить ущерб, наносимый проникающей радиацией по сравнению с ущербом, наносимым другими поражающими факторами (так называемое нейтронное оружие).

    Процессы, происходящие в ходе взрыва на значительной высоте, где плотность воздуха невелика, несколько отличаются от происходящих при проведении взрыва на небольших высотах. Прежде всего, из-за малой плотности воздуха поглощение первичного теплового излучения происходит на гораздо больших расстояниях и размер облака взрыва может достигать десятков километров. Существенное влияние на процесс формирования облака взрыва начинают оказывать процессы взаимодействия ионизированных частиц облака с магнитным полем Земли. Ионизированные частицы, образовавшиеся в ходе взрыва, оказывают также заметное влияние на состояние ионосферы, затрудняя, а иногда и делая невозможным распространение радиоволн (этот эффект может быть использован для ослепления радиолокационных станций).

    Поражение человека проникающей радиацией определяется суммарной дозой, полученной организмом, характером облучения и его продолжительностью. В зависимости от длительности облучения приняты следующие суммарные дозы гамма-излучения, не приводящие к снижению боеспособности личного состава: однократное облучение (импульсное или в течение первых 4 сут.) -50 рад; многократное облучение (непрерывное или периодическое) в течение первых 30 сут. - 100 рад, в течение 3 мес. - 200 рад, в течение 1 года - 300 рад.

    Радиоактивное заражение

    Радиоактивное заражение - результат выпадения из поднятого в воздух облака значительного количества радиоактивных веществ. Три основных источника радиоактивных веществ в зоне взрыва - продукты деления ядерного горючего, не вступившая в реакцию часть ядерного заряда и радиоактивные изотопы, образовавшиеся в грунте и других материалах под воздействием нейтронов (наведённая активность).

    Оседая на поверхность земли по направлению движения облака, продукты взрыва создают радиоактивный участок, называемый радиоактивным следом. Плотность заражения в районе взрыва и по следу движения радиоактивного облака убывает по мере удаления от центра взрыва. Форма следа может быть самой разнообразной, в зависимости от окружающих условий.