Как найти общую вероятность. Теория вероятности формулы и примеры решения задач

Итак, поговорим на тему, которая интересует очень многих. В данной статье я вам отвечу на вопрос о том, как рассчитать вероятность события. Приведу формулы для такого расчета и несколько примеров, чтобы было понятнее, как это делается.

Что такое вероятность

Начнем с того, что вероятность того, что то или иное событие произойдет – некая доля уверенности в конечном наступлении какого-то результата. Для этого расчета разработана формула полной вероятности, позволяющая определить, наступит интересующее вас событие или нет, через, так называемые, условные вероятности. Эта формула выглядит так: Р = n/m, буквы могут меняться, но на саму суть это никак не влияет.

Примеры вероятности

На простейшем примере разберем эту формулу и применим ее. Допустим, у вас есть некое событие (Р), пусть это будет бросок игральной кости, то есть равносторонний кубик. И нам требуется подсчитать, какова вероятность выпадения на нем 2 очков. Для этого нужно число положительных событий (n), в нашем случае – выпадение 2 очков, на общее число событий (m). Выпадение 2 очков может быть только в одном случае, если на кубике будет по 2 очка, так как по другому, сумма будет больше, из этого следует, что n = 1. Далее подсчитываем число выпадения любых других цифр на кости, на 1 кости – это 1, 2, 3, 4, 5 и 6, следовательно, благоприятных случаев 6, то есть m = 6. Теперь по формуле делаем нехитрое вычисление Р = 1/6 и получаем, что выпадение на кости 2 очков равно 1/6, то есть вероятность события очень мала.

Еще рассмотрим пример на цветных шарах, которые лежат в коробке: 50 белых, 40 черных и 30 зеленых. Нужно определить какова вероятность вытащить шар зеленого цвета. И так, так как шаров этого цвета 30, то есть, положительных событий может быть только 30 (n = 30), число всех событий 120, m = 120 (по общему количеству всех шаров), по формуле рассчитываем, что вытащить зеленый шар вероятность равна будет Р = 30/120 = 0,25, то есть 25 % из 100. Таким же образом, можно вычислить и вероятность вытащить шар другого цвета (черного она будет 33%, белого 42%).

  • Вероя́тность - степень (относительная мера, количественная оценка) возможности наступления некоторого события. Когда основания для того, чтобы какое-нибудь возможное событие произошло в действительности, перевешивают противоположные основания, то это событие называют вероятным, в противном случае - маловероятным или невероятным. Перевес положительных оснований над отрицательными, и наоборот, может быть в различной степени, вследствие чего вероятность (и невероятность) бывает большей либо меньшей. Поэтому часто вероятность оценивается на качественном уровне, особенно в тех случаях, когда более или менее точная количественная оценка невозможна или крайне затруднительна. Возможны различные градации «уровней» вероятности.

    Исследование вероятности с математической точки зрения составляет особую дисциплину - теорию вероятностей. В теории вероятностей и математической статистике понятие вероятности формализуется как числовая характеристика события - вероятностная мера (или её значение) - мера на множестве событий (подмножеств множества элементарных событий), принимающая значения от

    {\displaystyle 0}

    {\displaystyle 1}

    Значение

    {\displaystyle 1}

    Соответствует достоверному событию. Невозможное событие имеет вероятность 0 (обратное вообще говоря не всегда верно). Если вероятность наступления события равна

    {\displaystyle p}

    То вероятность его ненаступления равна

    {\displaystyle 1-p}

    В частности, вероятность

    {\displaystyle 1/2}

    Означает равную вероятность наступления и ненаступления события.

    Классическое определение вероятности основано на понятии равновозможности исходов. В качестве вероятности выступает отношение количества исходов, благоприятствующих данному событию, к общему числу равновозможных исходов. Например, вероятность выпадения «орла» или «решки» при случайном подбрасывании монетки равна 1/2, если предполагается, что только эти две возможности имеют место и они являются равновозможными. Данное классическое «определение» вероятности можно обобщить на случай бесконечного количества возможных значений - например, если некоторое событие может произойти с равной вероятностью в любой точке (количество точек бесконечно) некоторой ограниченной области пространства (плоскости), то вероятность того, что оно произойдет в некоторой части этой допустимой области равна отношению объёма (площади) этой части к объёму (площади) области всех возможных точек.

    Эмпирическое «определение» вероятности связано с частотой наступления события исходя из того, что при достаточно большом числе испытаний частота должна стремиться к объективной степени возможности этого события. В современном изложении теории вероятностей вероятность определяется аксиоматически, как частный случай абстрактной теории меры множества. Тем не менее, связующим звеном между абстрактной мерой и вероятностью, выражающей степень возможности наступления события, является именно частота его наблюдения.

    Вероятностное описание тех или иных явлений получило широкое распространение в современной науке, в частности в эконометрике, статистической физике макроскопических (термодинамических) систем, где даже в случае классического детерминированного описания движения частиц детерминированное описание всей системы частиц не представляется практически возможным и целесообразным. В квантовой физике сами описываемые процессы имеют вероятностную природу.

Хотите узнать, какие математические шансы на успех вашей ставки? Тогда для вас есть две хорошие новости. Первая: чтобы посчитать проходимость, не нужно проводить сложные расчеты и тратить большое количество времени. Достаточно воспользоваться простыми формулами, работа с которыми займёт пару минут. Вторая: после прочтения этой статьи вы с лёгкостью сможете рассчитывать вероятность прохода любой вашей сделки.

Чтобы верно определить проходимость, нужно сделать три шага:

  • Рассчитать процент вероятности исхода события по мнению букмекерской конторы;
  • Вычислить вероятность по статистическим данным самостоятельно;
  • Узнать ценность ставки, учитывая обе вероятности.

Рассмотрим подробно каждый из шагов, применяя не только формулы, но и примеры.

Быстрый переход

Подсчёт вероятности, заложенной в букмекерские коэффициенты

Первый шаг – необходимо узнать, с какой вероятностью оценивает шансы на тот или иной исход сам букмекер. Ведь понятно, что кэфы букмекерские конторы не ставят просто так. Для этого пользуемся следующей формулой:

P Б =(1/K)*100%,

где P Б – вероятность исхода по мнению букмекерской конторы;

K – коэффициент БК на исход.

Допустим, на победу лондонского Арсенала в поединке против Баварии коэффициент 4. Это значит, что вероятность его виктории БК расценивают как (1/4)*100%=25%. Или же Джокович играет против Южного. На победу Новака множитель 1.2, его шансы равны (1/1.2)*100%=83%.

Так оценивает шансы на успех каждого игрока и команды сама БК. Осуществив первый шаг, переходим ко второму.

Расчёт вероятности события игроком

Второй пункт нашего плана – собственная оценка вероятности события. Так как мы не можем учесть математически такие параметры как мотивация, игровой тонус, то воспользуемся упрощённой моделью и будем пользоваться только статистикой предыдущих встреч. Для расчёта статистической вероятности исхода применяем формулу:

P И =(УМ/М)*100%,

где P И – вероятность события по мнению игрока;

УМ – количество успешных матчей, в которых такое событие происходило;

М – общее количество матчей.

Чтобы было понятней, приведём примеры. Энди Маррей и Рафаэль Надаль сыграли между собой 14 матчей. В 6 из них был зафиксирован тотал меньше 21 по геймам, в 8 – тотал больше. Необходимо узнать вероятность того, что следующий поединок будет сыгран на тотал больше: (8/14)*100=57%. Валенсия сыграла на Месталье против Атлетико 74 матча, в которых одержала 29 побед. Вероятность победы Валенсии: (29/74)*100%=39%.

И это все мы узнаем только благодаря статистике предыдущих игр! Естественно, что на какую-то новую команду или игрока такую вероятность просчитать не получится, поэтому такая стратегия ставок подойдет только для матчей, в которых соперники встречаются не первый раз. Теперь мы умеем определять букмекерскую и собственную вероятности исходов, и у нас есть все знания, чтобы перейти к последнему шагу.

Определение ценности ставки

Ценность (валуйность) пари и проходимость имеют непосредственную связь: чем выше валуйность, тем выше шанс на проход. Рассчитывается ценность следующим образом:

V= P И *K-100%,

где V – ценность;

P И – вероятность исхода по мнению беттера;

K – коэффициент БК на исход.

Допустим, мы хотим поставить на победу Милана в матче против Ромы и подчитали, что вероятность победы «красно-черных» 45%. Букмекер предлагает нам на это исход коэффициент 2.5. Будет ли такое пари ценным? Проводим расчёты: V=45%*2.5-100%=12.5%. Отлично, перед нами ценная ставка с хорошими шансами на проход.

Возьмём другой случай. Мария Шарапова играет против Петры Квитовой. Мы хотим заключить сделку на победу Марии, вероятность которой по нашим расчетам 60%. Конторы предлагают на этот исход множитель 1.5. Определяем валуйность: V=60%*1.5-100=-10%. Как видим, ценности эта ставка не представляет и от неё следует воздержаться.

Зная, что вероятность можно измерить, попробуем выразить ее в цифрах. Существуют три возможных пути.

Рис. 1.1. Измерение вероятности

ВЕРОЯТНОСТЬ, ОПРЕДЕЛЯЕМАЯ СИММЕТРИЕЙ

Существуют ситуации, в которых возможные исходы равновероятны. Например, при бросании монеты один раз, если монета стандартная, вероятность появления «орла» или «решки» одинакова, т.е. Р(«орел») = Р(«решка»). Так как возможны лишь два исхода, то Р(«орел») + Р(«решка») = 1, следовательно, Р(«орел») = Р(«решка») = 0,5.

В экспериментах, где исходы имеют равные шансы появления, вероятность события Е, Р (Е) равна:

Пример 1.1. Монета брошена три раза. Какова вероятность двух «орлов» и одной «решки»?

Для начала найдем все возможные исходы: Чтобы убедиться, все ли возможные варианты мы нашли, воспользуемся диаграммой в виде дерева (см. гл. 1 раздел 1.3.1).

Итак, имеются 8 равновозможных исходов, следовательно, вероятность из них равна 1/8. Событие Е - два «орла и «решка - произошло три . Поэтому:

Пример 1.2. Стандартная игральная кость брошена два раза. Какова вероят того, что сумма очков равна 9 или больше?

Найдем все возможные исходы.

Таблица 1.2. Общее количество очков, получаемое при двукратном бросании игральной кости

Итак, в 10 из 36 возможных исходов сумма очков равна 9 или следовательно:

ВЕРОЯТНОСТЬ, ОПРЕДЕЛЯЕМАЯ ЭМПИРИЧЕСКИ

Пример с монетой из табл. 1.1 наглядно иллюстрирует механизм определ вероятности.

При общем числе экспериментов из которых удачных, верояп требуемого результата подсчитывается так:

Отношение есть относительная частота появления определен результата при достаточно продолжительном эксперименте. Вероятность подсчитывается либо на основе данных проведенного эксперимента, основе прошлых данных.

Пример 1.3. Из пятисот протестированных электроламп 415 проработали более 1000 часов. На основе данных этого эксперимента можно заключить, что вероятность нормального функционирования лампы данного типа более 1000 часов составляет:

Примечание. Контроль имеет разрушающий характер, поэтому не все лампы могут быть проверены. Если бы была протестирована только одна лампа, то вероятность составила бы 1 или 0 (т.е. сможет проработать 1000 часов или нет). Отсюда следует необходимость повторения эксперимента.

Пример 1.4. В табл. 1.3 приведены данные о стаже мужчин, работающих в фирме:

Таблица 1.3. Стаж работы мужчины

Какова вероятность того, что следующий принятый на работу в фирму человек проработает не меньше двух лет:

Решение.

Из таблицы видно, что 38 из 100 работников работают в компании больше двух лет. Эмпирическая вероятность того, что следующий работник останется в компании на срок более двух лет равна:

При этом мы предполагаем, что новый работник «типичен, а условия работы неизменны.

СУБЪЕКТИВНАЯ ОЦЕНКА ВЕРОЯТНОСТИ

В бизнесе часто возникают ситуации, в которых отсутствует симметрия, и экспериментальных данных тоже нет. Поэтому определение вероятности благоприятного исхода под влиянием взглядов и опыта исследователя носит субъективный характер.

Пример 1.5.

1. Эксперт по инвестициям считает, что вероятность получения прибыли в течение первых двух лет равна 0,6.

2. Прогноз менеджера по маркетингу: вероятность продажи 1000 единиц товара в первый месяц после его появления на рынке равна 0,4.

Теория вероятности - довольно обширный самостоятельный раздел математики. В школьном курсе теория вероятности рассматривается очень поверхностно, однако в ЕГЭ и ГИА имеются задачи на данную тему. Впрочем, решать задачи школьного курса не так уж сложно (по крайней мере то, что касается арифметических операций) - здесь не нужно считать производные, брать интегралы и решать сложные тригонометрические преобразования - главное, уметь обращаться с простыми числами и дробями.

Теория вероятности - основные термины

Главные термины теории вероятности - испытание, исход и случайное событие. Испытанием в теории вероятности называют эксперимент - подбросить монету, вытянуть карту, провести жеребьевку - все это испытания. Результат испытания, как вы уже догадались, называется исходом.

А что же такое случайность события? В теории вероятности предполагается, что испытание проводится ни один раз и исходов много. Случайным событием называют множество исходов испытания. Например, если вы бросаете монету, может произойти два случайных события - выпадет орел или решка.

Не путайте понятия исход и случайное событие. Исход - это один результат одного испытания. Случайное событие - это множество возможных исходов. Существует, кстати, и такой термин, как невозможное событие. Например, событие "выпало число 8" на стандартном игровом кубике является невозможным.

Как найти вероятность?

Все мы примерно понимаем, что такое вероятность, и довольно часто используем данное слово в своем лексиконе. Кроме того, мы можем даже делать некоторые выводы относительно вероятности того или иного события, например, если за окном снег, мы с большой вероятностью можем сказать, что сейчас не лето. Однако как выразить данное предположение численно?

Для того чтобы ввести формулу для нахождения вероятности, введем еще одно понятие - благоприятные исход, т. е. исход, который является благоприятным для того или иного события. Определение довольно двусмысленное, конечно, однако по условию задачи всегда понятно, какой из исходов благоприятный.

Например: В классе 25 человек, трое из них Кати. Учитель назначает дежурной Олю, и ей нужен напарник. Какова вероятность того, что напарником станет Катя?

В данном примере благоприятный исход - напарник Катя. Чуть позже мы решим эту задачу. Но сначала введем с помощью дополнительного определения формулу для нахождения вероятности.

Все школьные задачи крутятся вокруг одной этой формулы, и главная трудность обычно заключается в нахождении исходов. Иногда их найти просто, иногда - не очень.

Как решать задачи на вероятность?

Задача 1

Итак, теперь давайте решим поставленную выше задачу.

Число благоприятных исходов (учитель выберет Катю) равно трем, ведь Кать в классе три, а общих исходов - 24 (25-1, ведь Оля уже выбрана). Тогда вероятность равна: P = 3/24=1/8=0,125. Таким образом, вероятность того, что напарником Оли окажется Катя, составляет 12,5%. Несложно, правда? Давайте разберем кое-что посложней.

Задача 2

Монету бросили два раза, какова вероятность выпадения комбинации: один орел и одна решка?

Итак, считаем общие исходы. Как могут выпасть монеты - орел/орел, решка/решка, орел/решка, решка/орел? Значит, общее число исходов - 4. Сколько благоприятных исходов? Два - орел/решка и решка/орел. Таким образом, вероятность выпадения комбинации орел/решка равна:

  • P = 2/4=0,5 или 50 процентов.

А теперь рассмотрим такую задачу. У Маши в кармане 6 монет: две - номиналом 5 рублей и четыре - номиналом 10 рублей. Маша переложила 3 монеты в другой карман. Какова вероятность того, что 5-рублевые монеты окажутся в разных карманах?

Для простоты обозначим монеты цифрами - 1,2 - пятирублевые монеты, 3,4,5,6 - десятирублевые монеты. Итак, как могут лежать монеты в кармане? Всего есть 20 комбинаций:

  • 123, 124, 125, 126, 134, 135, 136, 145, 146, 156, 234, 235, 236, 245, 246, 256, 345, 346, 356, 456.

На первый взгляд может показаться, что некоторые комбинации пропали, например, 231, однако в нашем случае комбинации 123, 231 и 321 равнозначны.

Теперь считаем, сколько у нас благоприятных исходов. За них берем те комбинации, в которых есть либо цифра 1, либо цифра 2: 134, 135, 136, 145, 146, 156, 234, 235, 236, 245, 246, 256. Их 12. Таким образом, вероятность равна:

  • P = 12/20 = 0,6 или 60%.

Задачи по теории вероятности, представленные здесь, довольно простые, однако не думайте, что теория вероятности - это простой раздел математики. Если вы решите продолжать образование в вузе (за исключением гуманитарных специальностей), у вас обязательно будут пары по высшей математике, на которых вас ознакомят с более сложными терминами данной теории, и задачи там будут куда сложнее.