Физические параметры лопастей вертолета. Композитные лопасти

Приобретая все больше поклонников, на сегодня становятся не только проще, но и безопаснее. В нашем топе мы рассмотрим самые маленькие вертолеты в мире .
1 Вертолет GEN H-4 (Япония)

На сегодня это — самый маленький вертолет в мире, что засвидетельствовано даже в Книге Рекордов Гиннеса. GEN H-4, созданный одноименной японской компанией, имеет лопасти длиной 4 метра и вес всего лишь в 70 кг. У этого вертолета нет хвоста, т.к. он оснащен винтами соосного принципа действия, и это позволило значительно уменьшить его размеры. Грузоподъемность этого «малыша» впечатляет – он способен летать с весом в 210 кг (то есть ровно втрое больше собственного весе). Продаваться вертолет будет в разобранном виде, как конструктор, и, по замыслу производителей, будет собираться владельцем за 30 часов. Предложение более чем интересное, а что касается стоимости, то предположительно она будет начинаться с 200 тыс. долларов США.

2 Вертолет


На второе место мы ставим именно этот вертолет. Название уже говорит само за себя – «Москит»! Его разработка велась почти 10 лет, и «Москит» соединил в себе высокую надежность и легкость в управлении с маленькими размерами и очень хорошей маневренностью. Двигатель вертолета мощностью в 60 л.с. и 5-тиметровые лопасти с легкость поднимают в воздух машину и пилота общим весом до 300 кг. При этом сама машина весит всего 115 кг. Стоимость этой машины и ее модификаций стартует от 40 тыс. долларов.

3 Вертолет


Впервые этот вертолет взлетел в 2004 году, и изначально задумывался для экстремальных забав. Но на сегодня он и патрульный, пограничный, почтовый, а также учебный, поскольку, как оказалось, он имеет хорошие летные характеристики и очень надежен в использовании. Вес AirScooter II — всего 136 кг, объем двигателя — 65 л.с., скорость — 90 км/ч, потолок – 3 тыс. метров. На сегодня этот аппарат «разлетелся» (во всех смыслах) в 23 страны по цене в 50 тыс. долларов за единицу.

4 Вертолет


Этот легкий двухместный вертолет впервые поднялся в воздух в 2004 году. Он также мал и максимально удобен в эксплуатации, имеет высокие летные характеристики. Двигатель в 130 л.с. разгоняет машину до 160 км/ч на высоту в 3,6 км. Диаметр винта — 7 метров, грузоподъемность — 230 кг. Поставляется в разобранном виде, сборка требует около 250 часов. Стоимость вертолета составляет 95 тыс. евро.

5 Вертолет


Итальянцы также стараются не отставать в малой авиации. Они изготовили и продали уже более 400 своих сверхлегких вертолетов марки СН-7. Популярность он стал приобретать практически сразу с момента своего производства в 1996 году. Диаметр винта — 5,8 м., вес — 200 кг, максимальная скорость – 192 км/ч. В некоторых модификациях стоимость аппарата достигает 85-90 тыс. евро.

6 Вертолет


Легкий вертолет этой марки можно смело назвать «дедушкой» современных сверхлегких вертолетов. Созданный еще в 1975 году, он существует в более чем 3 тыс. экземпляров, эксплуатируемых в 60-ти странах мира. Основная масса современных вертолетов использует в своих конструкциях решения, найденные именно в R22. Сегодня этот вертолет стоит 258 тыс. долларов.

7 Вертолет DF Helicopters DF334 (Италия)


Двухместный сверхлегкий вертолет, также разработанный уже довольно давно — в 1980-х годах, за это время только подтвердивший свою надежность (вот уж точно, «в бой идут одни старики»…). Вес — всего 290 кг., винт – 6,8 м., скорость — 148 км/ч, стоимость — от 120 тыс. евро.

8 Вертолет Skyline SL-222 (Украина)


Легкий многоцелевой вертолет, который производится с 2011 года. Так же, как и его «собратья», может транспортироваться на обычном автоприцепе, прост и надежен в эксплуатации. Вес составляет 377 кг, стоимость — 149 тыс. долларов.

9 Вертолет


С 2003 года именно эта машина стала одной из самых популярных в своем классе. С весом всего в 445 кг и скоростью в 185 км/ч «EXEC» поднимается на 3048 м. Стоимость — от 280 тыс. долларов.

10 Вертолет Беркут-ВЛ (Россия)


Сегодня разработка этого вертолета находится в стадии окончательных испытаний, но имеет хорошие перспективы развития. Двигатель в 140 л.с. поднимает 477 кг (вес вертолета) на высоту в 4 км и развивает скорость в 185 км/ч. В скором времени ждем достойного представителя России на рынке легкой авиации!
Легкая авиация может воплотить мечту каждого человека о полете. И мы видим, что на сегодня уже существуют вертолеты стоимостью с хороший автомобиль. Поэтому очень вероятно, что в скором времени появятся и более доступные аппараты, а может быть, и еще меньших размеров!

Л опасти для вертолета как резина для автомобиля. Мягкие лопасти сглаживают реакции вертолета, делают его более ленивым. Жесткие, напротив, заставляют вертолет реагировать на управление без задержек. Тяжелые лопасти замедляют реакции, легкие обостряют. Лопасти с высоким профилем отбирают больше энергии, а с низким склонны к срыву потока, когда подъемная сила резко снижается. Выбирая лопасти, стоит учесть их параметры и выбрать те, что подойдут вашему стилю и опыту больше всего.

Когда мы выбираем лопасти, то в первую очередь смотрим на их длину, поскольку длина лопасти зависит от класса вертолета. Чаще под длиной подразумевается расстояние от крепежного отверстия лопасти до ее концевой части. Некоторые немногочисленные производители указывают полную длину лопасти от комля до концевой части. К счастью таких случаев мало.
От длины зависит подъемная сила, и сопротивление вращения которые создает лопасть. Длинная лопасть способна создать большую подъемную силу, но при этом отнимает больше энергии на вращение. С длинными лопастями модель стабильнее при висении и обладает большей "летучестью", т.е. способна на более крупные маневры и лучше выполняет авторотацию.

Хорда (ширина лопасти)

Важный параметр лопасти, который чаще всего не указывают вовсе, и остается только измерить хорду самостоятельно. Чем шире лопасть, тем больше подъемную силу она может создать при тех же углах атаки и тем резче вертолет при управлении по циклическому шагу. Широкая лопасть имеет более высокое сопротивление вращения и потому сильнее нагружает силовую установку. При использовании лопастей с широкой хордой важна точная работа шагом, иначе можно легко "задушить" мотор. Наибольший разброс ширины встречается у лопастей для вертолетов 50-ого класса и выше.


Длина и хорда.

Материал

Следующее, на что нужно обратить внимание, это материал, из которго сделаны лопасти. Сегодня наиболее распространенные материалы, из которых изготавливают лопасти вертолетов это карбон и стеклопластик. Деревянные лопасти постепенно сходят со сцены, так как не обладают достаточной прочностью и сильно ограничивают вертолет в летных возможностях. К тому же деревянные лопасти склонны к изменению формы, что приводит к постоянному появлению «бабочки». Пожалуй, наименьшее, на что сегодня стоит соглашаться, это стеклопластиковые лопасти. Они не страдают изменением формы, обладают достаточной жесткостью для выполнения легкого 3D и отлично подойдут начинающим вертолетчикам. Пилоты со стажем непременно выберут карбоновые лопасти как наиболее жесткие, позволяющие вертолету выполнять экстремальные фигуры высшего пилотажа и наделяют вертолет молниеносной реакцией на управление.

Важный параметр - вес лопасти. При прочих равных более тяжелая лопасть сделает вертолет более стабильным, снизит скорость управления по циклическому шагу. Тяжелая лопасть добавит стабильности и размеренности и запасет больше энергии при выполнении авторотации, что сделает маневр более комфортным. Если вы стремитесь к 3D полетам, выбирайте более легкие лопасти.

Форма лопасти

Прямая, трапециевидная. Чаще встречается прямая форма, трапециевидная скорее относится к экзотике. Последняя позволяет снизить сопротивление вращения ценой снижения отдачи.


Форма лопасти.

Симметричный - высота профиля одинаковая сверху и снизу лопасти. Лопасти с симметричным профилем способны создавать подъемную силу только при ненулевом шаге. Такие лопасти наиболее распространены среди современных вертолетов и используются на всех моделях, выполняющих 3D пилотаж.
Полусимметричный – снизу лопасти профиль имеет меньшую высоту. Такие лопасти способны создавать подъемную силу даже при нулевых углах атаки, т.е. Создают подъемную силу аналогично тому, как это делает крыло самолета. Такие лопасти используются редко, как правило, только на больших копийных вертолетах.

Высота профиля

Чем выше профиль, тем лучше он сопротивляется срыву потока, но тем выше его сопротивление. Деревянные лопасти обычно имеют более высокий профиль, но лишь для того, что бы обладать достаточной прочностью.


Форма профиля и его высота.

Толщина комля

Толщина комля напрямую связана с размером цапф вашего вертолета. Если комель толще, то лопасть не влезет в цапфу, если наоборот – будет болтаться. Обычно в пределах одного класса вертолетов толщина комля стандартна, тем не менее, при покупке лопастей убедитесь, что они подходят к вашему вертолету. Некоторые производители комплектуют лопасти шайбами-проставками, которые можно использовать, если посадочное место цапфы больше толщины комля. Такие шайбы надо устанавливать парами сверху и снизу комля, что бы лопасть была закреплена по центру цапфы.


Толщина комля.

Диаметр крепежного отверстия

Диаметр отверстия должен совпадать с диаметром крепежного винта цапфы. Как и толщина комля, этот параметр стандартный, тем не менее, стоит его проверить перед покупкой лопастей.

Положение крепежного отверстия относительно наступающей кромки.

Определяет то, насколько наступающая кромка лопасти выступает вперед цапфы. Смещенное назад отверстие приводит к тому, что при вращении лопасть отстает от цапфы, что делает такие лопасти более стабильными. Напротив, смещение отверстия к наступающей кромке заставляет лопасть при вращении выдвигаться вперед цапфы, и такое положение делает лопасть менее стабильной.


Положение крепежного отверстия.

Форма концевой части лопасти.

Форма концевой части влияет на сопротивление вращения ротора. Различают прямую, закругленную и скошенную форму. Более прямая форма создает подъемную силу по всей длине лопасть, но и имеет наибольшее сопротивление вращения.


Форма концевой части лопасти.

Продольный центр тяжести.

Положение центра тяжести в продольном направлении. Чем ближе центр тяжести к концевой части лопасти, тем лопасть более стабильна и лучше выполняет авторотацию. Наоборот, смещение центра тяжести к комлю делает лопасть более маневренной, но страдает накопление лопастью энергии при авторотации.

Поперечный центр тяжести.

Положение центра тяжесть поперек лопасти, от наступающей кромки к отступающей. Обычно стараются размещать центр тяжести так, чтобы при вращении лопасть не отставала от цапфы и не выступала вперед. Лопасть с сильно смещенным назад центром тяжести выступает при вращении вперед цапфы и, следовательно, более динамична.


Продольный и поперечный центр тяжести.

Динамическая балансировка: выступающая/отступающая лопасть.

Параметр зависит от положения крепежного отверстия, веса, положения поперечного и продольного центров тяжести. В целом, если лопасть при вращении выступает вперед цапфы, то такая лопасть более маневренная и больше подходит для 3D полетов, но отбирает больше энергии и делает вертолет недостаточно стабильным. Если напротив лопасть при вращении отстает от цапфы, то такая лопасть более стабильная. Если лопасть не отстает и не выступает, то это нейтральная лопасть. Такая лопасть наиболее универсальная и одинаково хорошо подходит как для маневров висения, так и для 3D полетов.


Динамическая балансировка.

Ночные лопасти.

Ночные лопасти со встроенными светодиодами и встроенным, либо съемным аккумулятором служат для комплектации вертолета для ночных полетов. Совместно с лопастями используются различные способы подсветки корпуса вертолета.

Лопасти с защитным стержнем.

Стержень не дает лопасти разлетаться на отдельные части в случае падения. Очень полезный элемент безопасности, который к сожалению присутствует только в дорогих лопастях известных производителей. Случается, что обломки лопастей, не оборудованных таким стержнем, разлетаются на расстояние до 10 метров от места падения и могут привести к травме.

За последнее время в мире вертолетной техники произошло несколько значимых событий. Американская компания Kaman Aerospace объявила о намерении возобновить производство синхроптеров, Airbus Helicopters пообещала разработать первый гражданский вертолет с электродистанционным управлением, а немецкая e-volo - испытать 18-роторный двухместный мультикоптер. Чтобы не запутаться во всем этом разнообразии, мы решили составить краткий ликбез по основным схемам вертолетной техники.

Впервые идея летательного аппарата с несущим винтом появилась около 400 года нашей эры в Китае, однако дальше создания детской игрушки дело не пошло. Всерьез инженеры взялись за создание вертолета в конце XIX века, а первый вертикальный полет нового типа летательного аппарата состоялся в 1907 году, спустя всего четыре года после первого полета братьев Райт. В 1922 году авиаконструктор Георгий Ботезат испытал вертолет-квадрокоптер, разработанный по заказу Армии США. Это был первый в истории устойчиво управляемый полет техники такого типа. Квадрокоптер Ботезата сумел взлететь на высоту пяти метров и провел в полете несколько минут.

С тех пор вертолетная техника претерпела множество изменений. Появился класс винтокрылых летательных аппаратов, который сегодня делится на пять типов: автожир, вертолет, винтокрыл, конвертоплан и X-крыло. Все они отличаются конструкцией, способом взлета и полета, управлением несущим винтом. В этом материале мы решили рассказать именно о вертолетах и их основных типах. При этом за основу была взята классификация по компоновке и расположению несущих винтов, а не традиционная - по типу компенсации реактивного момента несущего винта.

Вертолет является винтокрылым летательным аппаратом, у которого подъемная и движущая силы создаются одним или несколькими несущими винтами. Такие винты располагаются параллельно земле, а их лопасти устанавливаются под определенным углом к плоскости вращения, причем угол установки может изменяться в достаточно широких пределах - от нуля до 30 градусов. Установка лопастей на ноль градусов называется холостым ходом винта или флюгированием. В этом случае несущий винт не создает подъемной силы.

Во время вращения лопасти захватывают воздух и отбрасывают его в направлении, противоположном движению винта. В результате перед винтом создается зона пониженного давления, а за ним - повышенного. В случае вертолета так возникает подъемная сила, которая очень похожа на образование подъемной силы фиксированным крылом самолета. Чем больше угол установки лопастей, тем большую подъемную силу создает несущий винт.

Характеристики несущего винта определяются двумя основными параметрами - диаметром и шагом. Диаметр винта определяет возможности вертолета по взлету и посадке, а также отчасти величину подъемной силы. Шаг винта - это воображаемое расстояние, которое воздушный винт пройдет в несжимаемой среде при определенном угле установки лопастей за один оборот. Последний параметр влияет на подъемную силу и скорость вращения ротора, которую на большей части полета летчики стараются держать неизменной, меняя только угол установки лопастей.

При полете вертолета вперед и вращении несущего винта по часовой стрелке, набегающий поток воздуха сильнее воздействует на лопасти с левой стороны, из-за чего возрастает и их эффективность. В результате левая половина окружности вращения винта создает большую подъемную силу, чем правая, и возникает кренящий момент. Для его компенсации конструкторы придумали - это особая система, которая уменьшает угол установки лопастей слева и увеличивает его справа, выравнивая таким образом подъемную силу по обе стороны винта.

В целом, вертолет имеет несколько преимуществ и несколько недостатков перед самолетом. К преимуществам относится возможность вертикального взлета и посадки на площадки, диаметр которых в полтора раза превосходит диаметр несущего винта. При этом вертолет может на внешней подвеске перевозить крупногабаритные грузы. Вертолеты отличаются и лучшей маневренностью, поскольку могут висеть вертикально, лететь боком или задом-наперед, поворачиваться на месте.

К недостаткам же относятся большее, чем у самолетов, потребление топлива, большая инфракрасная заметность из-за горячего выхлопа двигателя или двигателей, а также повышенная шумность. Кроме того, вертолетом в целом сложнее управлять из-за ряда особенностей. Например, летчикам вертолетов знакомы явления земного резонанса, флаттера, вихревого кольца, эффекта запирания несущего винта. Эти факторы могут приводить к разрушению или падению машины.

У вертолетной техники любых схем существует режим авторотации. Он относится к аварийным режимам. Это означает, что при отказе, например, двигателя несущий винт или винты при помощи обгонной муфты отсоединяются от трансмиссии и начинают свободно раскручиваться набегающим потоком воздуха, тормозя падение машины с высоты. В режиме авторотации возможна управляемая аварийная посадка вертолета, причем вращающийся несущий винт через редуктор продолжает раскручивать рулевой винт и генератор.

Классическая схема

Из всех типов вертолетных схем сегодня самой распространенной является классическая. При такой схеме машина имеет только один несущий винт, который может приводиться в движение одним, двумя или даже тремя двигателями. К этому типу, например, относятся ударные AH-64E Guardian, AH-1Z Viper, Ми-28Н, транспортно-боевые Ми-24 и Ми-35, транспортные Ми-26, многоцелевые UH-60L Black Hawk и Ми-17, легкие Bell 407 и Robinson R22.

При вращении несущего винта на вертолетах классической схемы возникает реактивный момент, из-за которого корпус машины начинает раскручиваться в сторону, противоположную вращению ротора. Для компенсации момента используют рулевое устройство на хвостовой балке. Как правило им является рулевой винт, но это может быть и фенестрон (винт в кольцевом обтекателе) или несколько воздушных сопел на хвостовой балке.

Особенностью классической схемы являются перекрестные связи в каналах управления, обусловленные тем, что рулевой винт и несущий приводятся одним и тем же двигателем, а также наличием автомата перекоса и множества других подсистем, ответственных за управление силовой установкой и роторами. Перекрестная связь означает, что при изменении какого-либо параметра работы воздушного винта, поменяются и все остальные. Например, при увеличении частоты вращения несущего винта возрастет и частота вращения рулевого.

Управление полетом осуществляется наклоном оси вращения несущего винта: вперед - машина полетит вперед, назад - назад, вбок - вбок. При наклоне оси вращения возникнет движущая сила и уменьшается подъемная. По этой причине для сохранения высоты полета летчику необходимо менять и угол установки лопастей. Направление полета задается изменением шага рулевого винта: чем он меньше, тем меньше компенсируется реактивный момент, и вертолет поворачивает в сторону, противоположную вращению несущего винта. И наоборот.

В современных вертолетах в большинстве случаев управление полетом по горизонтали осуществляется при помощи автомата перекоса. Например, для движения вперед летчик при помощи автомата уменьшает угол установки лопастей для передней половины плоскости вращения крыла и увеличивает - для задней. Таким образом сзади подъемная сила увеличивается, а спереди - уменьшается, благодаря чему изменяется наклон винта и появляется движущая сила. Такая схема управления полетом применяется на всех вертолетах почти всех типов, если на них установлен автомат перекоса.

Соосная схема

Второй по распространенности вертолетной схемой является соосная. В ней рулевой винт отсутствует, зато есть два несущих винта - верхний и нижний. Они располагаются на одной оси и вращаются синхронно в противоположных направлениях. Благодаря такому решению винты компенсируют реактивный момент, а сама машина получается несколько более устойчивой по сравнению с классической схемой. Кроме того, у вертолетов соосной схемы практически отсутствуют перекрестные связи в каналах управления.

Наиболее известным производителем вертолетов соосной схемы является российская компания «Камов». Она выпускает корабельные многоцелевые вертолеты Ка-27, ударные Ка-52 и транспортные Ка-226. Все они имеют по два винта, расположенных на одной оси друг под другом. Машины соосной схемы, в отличие от вертолетов классической схемы, способны, например, делать воронку, то есть выполнять облет цели по кругу, оставаясь на одном и том же расстоянии от нее. При этом носовая часть всегда остается развернутой в сторону цели. Управление рысканием осуществляется подтормаживанием одного из несущих винтов.

В целом управлять вертолетами соосной схемы несколько проще, чем обычными, особенно в режиме висения. Но существуют и свои особенности. Например, при выполнении петли в полете может случиться перехлест лопастей нижнего и верхнего несущего винтов. Кроме того, в проектировании и производстве соосная схема более сложна и дорога, чем классическая схема. В частности из-за редуктора, передающего вращение вала двигателя на винты, а также автомата перекоса, синхронно устанавливающего угол лопастей на винтах.

Продольная и поперечная схемы

Третьей по популярности является продольная схема расположения несущих винтов вертолета. В этом случае винты располагаются параллельно земле на разных осях и разнесены друг от друга - один находится над носовой частью вертолета, а другой - над хвостовой. Типичным представителем машин такой схемы является американский тяжелый транспортный вертолет CH-47G Chinook и его модификации. Если винты располагаются на законцовках крыльев вертолета, то такая схема называется поперечной.

Серийных представителей вертолетов поперечной схемы сегодня не существует. В 1960-1970-х годах конструкторское бюро Миля разрабатывало тяжелый грузовой вертолет В-12 (также известен, как Ми-12, хотя этот индекс неверен) поперечной схемы. В августе 1969 года прототип В-12 установил рекорд грузоподъемности среди вертолетов, подняв на высоту 2,2 тысячи метров груз массой 44,2 тонны. Для сравнения самый грузоподъемный в мире вертолет Ми-26 (классическая схема) может поднимать грузы массой до 20 тонн, а американский CH-47F (продольная схема) - массой до 12,7 тонны.

У вертолетов продольной схемы несущие винты вращаются в противоположных направлениях, однако это компенсирует реактивные моменты лишь отчасти, из-за чего в полете летчикам приходится учитывать возникающую боковую силу, уводящую машину с курса. Движение в стороны задается не только наклоном оси вращения несущих винтов, но и разными углами установки лопастей, а управление рысканием производится за счет изменения частоты вращения роторов. Задний винт у вертолетов продольной схемы всегда располагается чуть выше переднего. Это сделано для исключения взаимного влияния от их воздушных потоков.

Кроме того, на определенных скоростях полета вертолетов продольной схемы иногда могут возникать значительные вибрации. Наконец, вертолеты продольной схемы оснащаются сложной трансмиссией. По этой причине такая схема расположения винтов распространена мало. Зато вертолеты продольной схемы меньше других машин подвержены возникновению вихревого кольца. В этом случае во время снижения воздушные потоки, создаваемые винтом, отражаются от земли вверх, затягиваются винтом и снова направляются вниз. При этом подъемная сила несущего винта резко снижается, а изменение частоты вращения ротора или увеличение угла установки лопастей эффекта практически не оказывает.

Синхроптер

Сегодня вертолеты, построенные по схеме синхроптера, можно отнести к самым редким и наиболее интересными с конструктивной точки зрения машинами. Их производством до 2003 года занималась только американская компания Kaman Aerospace. В 2017 году компания планирует возобновить выпуск таких машин под обозначением K-Max. Синхроптеры можно было бы отнести к вертолетам поперечной схемы, поскольку валы двух их винтов расположены по бокам корпуса. Однако оси вращения этих винтов расположены под углом другу к другу, а плоскости вращения - пересекаются.

У синхроптеров, как у вертолетов соосной, продольной и поперечной схем, рулевой винт отсутствует. Несущие же винты вращаются синхронно в противоположные стороны, а их валы связаны друг с другом жесткой механической системой. Это гарантированно предотвращает столкновение лопастей при разных режимах и скоростях полета. Впервые синхроптеры были изобретены немцами во время второй мировой войны, однако серийное производство велось уже в США с 1945 года компанией Kaman.

Направлением полета синхроптера управляют исключительно изменением угла установки лопастей винтов. При этом из-за перекрещивания плоскостей вращения винтов, а значит сложения подъемных сил в местах перекрещивания, возникает момент кабрирования, то есть подъема носовой части. Этот момент компенсируется системой управления. В целом же, считается, что синхроптером проще управлять в режиме висения и на скоростях больше 60 километров в час.

К достоинствам таких вертолетов относится экономия топлива за счет отказа от рулевого винта и возможность более компактного размещения агрегатов. Кроме того, синхроптерам характерна большая часть положительных качеств вертолетов соосной схемы. К недостаткам же относится необычайная сложность механической жесткой связи валов винтов и системы управления автоматами перекоса. В целом это делает вертолет дороже, по сравнению с классической схемой.

Мультикоптер

Разработка мультикоптеров началась практически одновременно с работами над вертолетом. Именно по этой причине первым вертолетом, совершившим управляемый взлет и посадку стал в 1922 году квадрокоптер Ботезата. К мультикоптерам относят машины, как правило имеющие четное количество несущих винтов, причем их должно быть больше двух. В серийных вертолетах сегодня схема мультикоптеров не используется, однако она чрезвычайно популярна у производителей малой беспилотной техники.

Дело в том, что в мультикоптерах используются винты с неизменяемым шагом винта, причем каждый из них приводится в движение своим двигателем. Компенсация реактивного момента производится вращением винтов в разные стороны - половина крутится по часовой стрелке, а другая половина, расположенная по диагонали, - в противоположном направлении. Это позволяет отказаться от автомата перекоса и в целом значительно упростить управление аппаратом.

Для взлета мультикоптера частота вращения всех винтов увеличивается одинаково, для полета в сторону - вращение винтов на одной половине аппарата ускоряется, а на другой - замедляется. Поворот мультикоптера производится замедлением вращения, например, винтов, крутящихся по часовой стрелке или наоборот. Такая простота конструкции и управления и послужила основным толчком к созданию квадрокоптера Ботезата, однако последующее изобретение рулевого винта и автомата перекоса практически затормозило работы над мультикоптерами.

Причиной же, по которой сегодня не существует мультикоптеров, предназначенных для перевозки людей, является безопасность полетов. Дело в том, что в отличие от всех остальных вертолетов, машины с несколькими винтами не могут совершать аварийную посадку в режиме авторотации. При отказе всех двигателей мультикоптер становится неуправляемым. Впрочем, вероятность такого события невысока, однако отсутствие режима авторотации является главным препятствием для прохождении сертификации на безопасность полетов.

Впрочем, в настоящее время немецкая компания e-volo занимается разработкой мультикоптера с 18 роторами. Этот вертолет предназначен для перевозки двух пассажиров. Как ожидается, он совершит первый полет в ближайшие несколько месяцев. По расчетам конструкторов, прототип машины сможет находиться в воздухе не больше получаса, однако этот показатель планируется довести по меньшей мере до 60 минут.

Следует также отметить, что помимо вертолетов с четным количеством винтов существуют и мультикоптерные схемы с тремя и пятью винтами. У них один из двигателей расположен на отклоняемой в стороны платформе. Благодаря этому осуществляется управление направлением полета. Впрочем, в такой схеме становится сложнее гасить реактивный момент, поскольку два винта из трех или три из пяти всегда вращаются в одном направлении. Для нивелирования реактивного момента некоторые из винтов вращаются быстрее, а это создает ненужную боковую силу.

Скоростная схема

Сегодня наиболее перспективной в вертолетной технике считается скоростная схема, позволяющая вертолетам летать на существенно большей скорости, чем могут современные машины. Чаще всего такую схему называют комбинированным вертолетом. Машины этого типа строятся по соосной схеме или с одним винтом, однако имеют небольшое крыло, создающее дополнительную подъемную силу. Кроме того, вертолеты могут быть оснащены толкающим винтом в хвостовой части или двумя тянущими на законцовках крыла.

Ударные вертолеты классической схемы AH-64E способны развивать скорость до 293 километров в час, а соосные Ка-52 - до 315 километров в час. Для сравнения, комбинированный вертолет - демонстратор технологий Airbus Helicopters X3 с двумя тянущими винтами может разгоняться до 472 километров в час, а его американский конкурент с толкающим винтом - Sikorksy X2 - до 460 километров в час. Перспективный разведывательный скоростной вертолет S-97 Raider сможет летать на скоростях до 440 километров в час.

Строго говоря, комбинированные вертолеты относятся скорее не к вертолетам, а к другому типу винтокрылых летательных аппаратов - винтокрылам. Дело в том, что движущая сила у таких машин создается не только и не столько несущими винтами, сколько толкающими или тянущими. Кроме того, за создание подъемной силы отвечают и несущие винты, и крыло. А на больших скоростях полета управляемая обгонная муфта отключает несущие винты от трансмиссии и дальнейший полет идет уже в режиме авторотации, при которой несущие винты работают, фактически, как крыло самолета.

В настоящее время разработкой скоростных вертолетов, которые в перспективе смогут развивать скорость свыше 600 километров в час, занимаются несколько стран мира. Помимо Sikorsky и Airbus Helicopters такие работы ведут российские «Камов» и конструкторское бюро Миля (Ка-90/92 и Ми-X1 соответственно), а также американская Piacesky Aircraft. Новые комбинированные вертолеты смогут совместить в себе скорость полета турбовинтовых самолетов и вертикальные взлет и посадку, присущие обычным вертолетам.

Фотография: Official U.S. Navy Page / flickr.com

В наше время трудно представить жизнь без воздушного транспорта . Он прочно вошёл в быт народов нашей планеты, стал неотъемлемой частью представлений человека о стремительном прогрессе науки и техники. Гражданская авиация, как бы сблизившая страны и континенты, способствует развитию политического, экономического, культурного сотрудничества между государствами.

Наша авиация развивалась и мужала вместе со всей страной и ныне находит самое широкое применение во многих областях хозяйственного строительства, вносит большой вклад в укрепление экономического и оборонного могущества нашей Родины. Она поистине детище партии и народа. В её истории отразилась сама жизнь государства рабочих и крестьян - бурная, полная революционного динамизма, новаторской энергии, созидательной мощи.

Сегодня среди авиатранспортных предприятий и компаний мира первое место принадлежит Аэрофлоту , располагающему большим парком современных комфортабельных скоростных самолётов и вертолётов , хорошо оснащенному аэропортами на магистральных и местных воздушных трассах, осуществляющему полёты по разветвлённой сети внутренних и международных авиалиний.

Самолёты и вертолёты гражданской авиации заняты не только перевозкой пассажиров и различных грузов, но широко применяются во многих отраслях промышленности и сельского хозяйства. Гул авиационных двигателей можно услышать над сельскохозяйственными и лесными угодьями, над стройками и таёжными посёлками геологов, над научными станциями Арктики и Антарктиды.

В феврале 1972 г. работники Аэрофлота, а вместе с ними вся страна отмечали 50-летие гражданской авиации СССР. «Созданная по инициативе В. И. Ленина гражданская авиация, - говорилось в приветствии ЦК КПСС, Президиума Верховного Совета СССР и Совета Министров СССР работникам Аэрофлота, - в результате заботы Коммунистической партии и Советского правительства, героического труда нашего народа превратилась в высокоразвитую отрасль народного хозяйства, оснащённую первоклассной авиационной техникой. Она успешно выполняет возложенные на неё задачи по перевозке пассажиров и грузов, оказывает большую помощь сельскому хозяйству и медицине, широко используется в охране лесных богатств и геологоразведочных работах».

Большую долю задач, поставленных перед Аэрофлотом XXIV съездом партии, выполняют вертолёты. Притом с появлением новых, более мощных и совершенных моделей вертолётов сфера их применения в народном хозяйстве неуклонно растёт.

Когда в Ле Бурже летом 1971 г. проходил 29-й Международный салон авиации и космонавтики, то на смотровой площадке рядом с советским вертолётом В-12 оказались два сверхзвуковых лайнера Ту-144 и «Конкорд ». Каково же было удивление посетителей, когда они увидели, что эти огромные самолёты свободно умещаются под мотогондолами вертолёта-гиганта. Он был одним из самых интересных экспонатов выставки, или, как писали в своих отчётах журналисты, звездой первой величины. Авиационных специалистов не так удивляли феноменальные лётно-технические данные вертолёта, сколько смелое, принципиально новое решение конструктивных проблем, связанных с компоновкой двигателей, созданием новых редукторов, трансмиссий, несущих винтов. Несколько мировых рекордов, установленных на В-12, и его успешный перелёт по странам Европы протяжённостью свыше семи тысяч километров - подтверждение высоких качеств грузолёта.

От первой модели вертолёта, созданной более двухсот лет тому назад великим русским ученым М. В. Ломоносовым, до современных многотонных вертолётов - таков путь развития винтокрылых машин.

С каждым годом вертолёты находят всё более широкое примеёнение в народном хозяйстве и в военном деле. Они используются как средство транспорта и связи в труднодоступных районах страны, для ледовой разведки, в сельском хозяйстве, для обслуживания экспедиций и рыболовного флота, при погрузке и разгрузке судов , несут в портах и гаванях лоцманскую и диспетчерскую службу. Широкое применение вертолёты нашли при составлении карт местности, для геофизической и геологической разведки, спасения людей во время наводнений и при других стихийных бедствиях. Вертолёты сыграли важную роль в осуществлении таких крупных геологических открытий, как якутские алмазы, тюменская нефть, газ Ямала.

На советских вертолётах установлены десятки мировых рекордов, многие из которых остаются непревзойдёнными и по сей день.

В предлагаемой читателю книге в популярной форме кратко рассказывается об истории создания вертолёта, его устройстве и применении в различных отраслях народного хозяйства и в военном деле. Книга рассчитана на широкой круг читателей, незнакомых с устройством вертолёта и принципами его полёта.

Глава I. Из истории создания вертолётов

Рис. 1. Воздухобежная машина М. В. Ломоносова

Рис. 2. Один из первых советских вертолётов ЦАГИ-1-ЭА

Рис. 3. Вертолёт конструкции И. П. Братухина 5-ЭА

Рис. 4. Вертолёт Ми-1 конструкции М. Л. Миля

Рис. 5. Вертолёт Ми-2 по всем показателям превзошёл своего предшественника

Рис. 6. Ми-8 - мощные советские вертолёты

Рис. 7. Вертолёт Ми-10 - летающий кран

Рис. 8. Вертолёт конструкции Н. И. Камова - Ка-18

Рис. 9. Вертолёт-гигант В-12

С древнейших времен человек мечтал подняться в воздух подобно птице. Велик путь воплощения этой мечты - от мифа о полете Икара к Солнцу и сказок о ковре-самолёте до сверхзвуковых полётов современных воздушных лайнеров и космических кораблей.

Идея создания вертолёта - одна из самых древних в истории полётов. Это подтверждается материалами, найденными в архивах Миланской библиотеки в середине XIX века. Среди них сохранились рисунки, сделанные рукой известного итальянского ученого и художника Леонардо да Винчи в 1475 г. В этих рисунках и подписях к ним высказывалась идея применения винта Архимеда при постройке летательного аппарата. Леонардо да Винчи предполагал осуществить вертикальный взлёт своей модели с помощью винта, вращающегося в горизонтальной плоскости. Но его проект был далёк от практического осуществления.

Первый опыт постройки действующей модели вертолёта осуществил в 1754 г. великий русский учёный М. В. Ломоносов. Занимаясь исследованием верхних слоёв атмосферы, учёный сконструировал небольшой летательный аппарат, способный поднимать в воздух метеорологические приборы. О конструктивных особенностях этого аппарата даёт представление чертёж, сделанный М. В. Ломоносовым. В небольшом лёгком корпусе помещалась часовая пружина, которая системой зубчатых колёс была соединена с двумя концентрическими валиками с прикреплёнными к ним двумя воздушными винтами, расположенными друг над другом (рис. 1).

Исследователи предполагают, что, работая над созданием этого аппарата, М. В. Ломоносов учёл реактивный момент, вызываемый вращением несущей системы, и уравновесил его путём расположения на одной оси двух винтов, вращающихся в противоположных направлениях. Такое расположение винтов в дальнейшем получило название соосной схемы и нашло широкое применение в практике вертолётостроения.

По чертежам М. В. Ломоносова была построена действующая модель машины, которую он продемонстрировал 1 июля 1754 года членам Российской Академии наук. «Высокопочтенный советник Ломоносов показал изобретённую им машину, называемую им аэродинамическою (то есть воздухобежной), - было записано в протоколе. - Машина подвешивалась на шнуре, протянутом по двум блокам, и удерживалась в равновесии грузиками, подвешенными с противоположного конца. Как только пружина заводилась, машина поднималась на высоту и поэтому обещала достижения желаемого действия. Но это действие, по суждению изобретателя, ещё более увеличится, если будет увеличена сила пружины и если увеличить расстояние между той и другой парой крыльев, а коробка, в которой заложена пружина, будет сделана для уменьшения веса из дерева. Об этом он (Ломоносов) обещал позаботиться».

В те годы винт как устройство для приведения в движение транспортных средств, в том числе и судов, вообще не был известен и не использовался. М. В. Ломоносов впервые в истории предпринял попытку для подъёма в воздух летательного аппарата, что было для того времени большим достижением. Конечно, при недостаточном уровне развития техники в те годы построить модель большого размера из-за отсутствия мощного и надёжного двигателя было невозможно.

Многие изобретатели и умельцы в разных странах пытались строить летательные аппараты с машущими крыльями - орнитоптеры, то есть использовать решение, подсказанное самой природой. Однако их попытки не увенчались успехом, и до сих пор не построено ни одной птицекрылой машины, которая могла бы хорошо держаться в воздухе и обладала элементарными лётными характеристиками. Техническая задача создания птицекрылой машины оказалась исключительно сложной.

Многочисленные неудачи в этой области повернули мысль изобретателей к аппаратам с несущими винтами, которые приводятся в движение двигателями.

Во второй половине XIX века технический прогресс создал благоприятную обстановку для учёных и изобретателей, работающих в области воздухоплавания и авиации. Создание машины, способной подняться в воздух, стало реальным лишь после того, когда техника двигателестроения достигла сравнительно высокого уровня.

В 1869 г. известный русский электротехник А. Н. Лодыгин спроектировал первый «электролёт», который имел два воздушных винта. Один - несущий для создания вертикальной тяги, другой - тянущий для горизонтальной тяги. Для вращения винтов конструктор спроектировал специальный электродвигатель мощностью 300 л. с. Но этот проект из-за отсутствия необходимых средств не был осуществлён.

Большой вклад в изучение работы воздушных винтов для вертолётов внёс академик М. А. Рыкачев. Ещё в начале семидесятых годов прошлого столетия он построил специальный прибор для изучения силы тяги винта, вращающегося в горизонтальной плоскости. В конце XIX века в России появились первые теоретические работы о воздушных винтах и аэродинамике. Их авторами были известные русские учёные С. К. Джевецкий, Д. И. Менделеев, Н. Е. Жуковский, С. А. Чаплыгин, К. Э. Циолковский и другие.

Результаты первых работ по вертолётам в одной стране были мало известны в других странах, и часто развитие новых идей в этой области шло независимо и параллельно.

Ещё в начале 1907 г. русский военный инженер К. А. Антонов начал разработку проекта вертолёта, который был построен три года спустя. Два винтовых колеса состояли из отдельных алюминиевых треугольных пластин-лопастей, скреплённых двумя большими обручами. Лопасти винтов могли поворачиваться вокруг своих продольных осей. Изменяя по желанию углы атаки лопастей, можно было образовать из винтовых колёс своеобразный парашют. Небольшой винт должен был создавать вертолёту тягу, обеспечивающую горизонтальное перемещение. Аппарат был снабжён горизонтальным стабилизатором и рулём поворота. Гондола обнесена решёткой с перилами. Винтовые колёса приводились в движение бензиновым мотором мощностью 30-35 л. с., передающим одновременно движение винтам с помощью специального вала и зубчатой передачи. Аппарат был установлен на тележку, три колеса которой имели возможность поворачиваться. При испытаниях аппарат из-за маломощного двигателя не смог развить необходимой подъёмной силы и оторваться от земли.

Построенный в 1908 г. студентом Киевского политехнического института И. И. Сикорским вертолёт имел два двухлопастных винта, укреплённых на вертикальной оси на некотором расстоянии один от другого. Винты приводились в движение трёхцилиндровым бензиновым двигателем мощностью 12 л. с. Испытания показали, что мощность двигателя недостаточна для подъёма аппарата.

Несмотря на неудачу, Сикорский к весне 1910 г. построил второй геликоптер . Он имел два трёхлопостных винта и был снабжён более мощным двигателем в 25 л. с. Аппарат весил 180 кг. Но конструктор не довёл своих работ до конца над геликоптером, начав работать в области создания аэропланов .

В начале 1909 г. студент Московского высшего технического училища и деятельный участник воздухоплавательного кружка, впоследствии академик, заслуженный деятель науки и техники Б. Н. Юрьев разработал проект оригинального геликоптера. В средней части его корпуса должен был размещаться двигатель «Гном» мощностью 70 л. с. для вращения двух двухлопастных винтов. Верхний - диаметром 9 м и нижний - 3 м. Кроме того, аппарат имел рулевой винт с поворотными лопастями.

Для обеспечения управляемости и устойчивости геликоптера в полёте был предусмотрен так называемый автомат-перекос, позволявший изменять углы установки лопастей винта и благодаря этому наклонять аппарат в нужном направлении. Геликоптер был снабжён шасси для разбега и парашютом на случай остановки двигателя. Общий вес аппарата составлял 315 кг.

В конце 1909 г. Юрьев разработал второй вариант своего геликоптера. Но для него не удалось найти подходящего двигателя, так как потребная для взлёта мощность составляла 50 л. с. Единственным двигателем, которым располагал воздухоплавательный кружок при Московском высшем техническом училище, был «Анзани» мощностью 25-30 л. с. Юрьеву пришлось ещё раз переделать проект геликоптера, с тем чтобы можно было использовать единственный двигатель.

Лишь в начале 1912 г. был построен геликоптер Юрьева. Он был одновинтовым. Диаметр двухлопастного винта составлял 8 м. Реактивный момент несущего винта конструктор предложил компенсировать при помощи рулевого винта, установленного в конце хвостовой фермы. Он приводился во вращение основным двигателем с помощью специального передаточного механизма. Эта схема вошла в историю современного вертолётостроения как классическая схема одновинтовых вертолётов с хвостовым (рулевым) винтом.

Из-за малой мощности двигателя и необходимости максимально облегчить вес аппарата Юрьеву пришлось отказаться от установки автомата-перекоса и поворотных лопастей винта. Тем не менее аппарат весил 202,5 кг.

Весной 1912 г. этот вертолёт демонстрировался на 2-й Международной воздухоплавательной выставке в Москве, и ему была присуждена золотая медаль.

Однако, как писал сам Юрьев, «начатые опыты с этим вертолётом пришлось прекратить, так как произошла поломка главного вала из-за крайне неравномерного хода трёхцилиндрового четырёхтактного двигателя „Анзани“. Денег на продолжение работ у кружка не было…».

Задолго до аналогичных изобретений за рубежом Б. Н. Юрьеву удалось создать автомат-перекос, изучить авторотацию винтов и разработать проблему безопасности спуска аппарата в случае остановки двигателя. Им же были разработаны вопросы о поступательной скорости и грузоподъёмности геликоптера.

Вся история развития воздухоплавания и авиации в царской России отмечена тупым и безразличным отношением правительственных чиновников к судьбе того или иного изобретения, конструкции летательного аппарата. Даже в тех редких случаях, когда правительство давало средства на осуществление проекта, дело почти никогда не доводилось до конца. Достаточно было первой неудачи, поломки или аварии, чтобы конструкция или изобретение забраковывалось. Обычно царские чиновники, испуганные первой случайной неудачей, отказывались финансировать продолжение работ. Поэтому многие прекрасные проекты и уже построенные замечательные образцы обрекались на уничтожение. Так было с самолётом Можайского, с дирижаблем Костовича, с тяжёлым самолётом «Святогор» Слесарева и с многими другими изобретениями. Бездарность правительственных чиновников, общая техническая и экономическая отсталость страны тормозили развитие авиации в России. Лишь Великая Октябрьская социалистическая революция открыла широчайшие возможности для творческой деятельности отечественных учёных, конструкторов и изобретателей.

Становление и развитие нашей авиации неразрывно связано с именем В. И. Ленина. Ещё на заре строительства Советского государства вождь партии и народа прозорливо увидел в авиации одну из наиболее прогрессивных отраслей народного хозяйства, имеющую важное значение для будущего страны социализма. Уже тогда в тяжелейшей экономической обстановке, несмотря на разруху, В. И. Ленин и партия призвали рабочий класс, всех трудящихся незамедлительно приступить к созданию Красного Воздушного Флота. В делах Совета Труда и Обороны хранится немало документов по вопросам авиации, подписанных В. И. Лениным.

Надо было обладать гением великого Ленина, чтобы с удивительной точностью предсказать значение аэрофикации, ту огромную социальную роль, которую была призвана сыграть авиация в нашей необъятной стране.

Выполняя указания Владимира Ильича Ленина, советский народ, руководимый Коммунистической партией, несмотря на трудности, находит средства для развития авиации. В стране открываются первые регулярные воздушные линии, первые научно-исследовательские учреждения, первые конструкторские бюро. То было начало. Подобно тому, как ленинский план электрификации явился прообразом грядущих пятилеток, так и многое из того, что делалось в те годы в области авиационной науки и техники, подготовки кадров, послужило истоком нынешних достижений.

В нашей стране были организованы конструкторские бюро и научные учреждения, которые занимались разработкой теории самолётостроения, созданием новых моделей самолётов и вертолётов.

Конструкторы и изобретатели вертолётов использовали несколько способов уравновешивания реактивного момента несущей системы: хвостовой винт, парные винты, вращающиеся в противоположных направлениях (соосная, поперечная и продольная схемы). Но во всех случаях несущие винты, как правило, имели «жёсткую» заделку лопастей во втулке. Лопасть могла поворачиваться только относительно своей продольной оси, но сохраняла неизменное пространственное положение оси относительно втулки несущего винта.

До 1925-1927 гг. вертолёты с «жёсткими» несущими винтами не поднимались выше 4-6 м, не достигали скорости более 15-20 км/час. Наибольшей дальностью был полёт по кругу на один километр. Причиной такого медленного улучшения лётных характеристик были сильные вибрации вертолётов, плохая устойчивость, трудности балансировки и невозможность планирования при остановке двигателя.

Конструкторы настойчиво работали над устранением этих недостатков. Требовалось создать такую несущую систему, которая обеспечивала бы безопасность моторных и безмоторных спусков, имела бы лучшую устойчивость и управляемость и создавала меньший уровень вибраций.

Чтобы решить эти задачи, конструкторам пришлось отойти от классических схем вертолётов и искать новые пути. И вот появился автожир . На нём устанавливался самовращающийся винт и применялась шарнирная подвеска лопастей. Именно эти два решения и определили успех нового летательного аппарата: дали возможность совершать безмоторные планирующие спуски, обеспечили хорошую балансировку и устойчивость на всех режимах полёта и уменьшили вибрации.

В конце 20-х годов были созданы первые советские автожиры. В отличие от самолёта подъёмная сила автожира создаётся не крылом, а большим несущим винтом. Аппарат движется поступательно за счёт тяги тянущего винта, так же как и самолёт. Но в отличие от самолёта несущий винт автожира вращается не от двигателя, а от набегающего потока воздуха. Поэтому автожир не мог взлететь вертикально или висеть в воздухе. Его преимущество перед самолётом состояло в том, что он имел небольшую длину разбега и при отказе двигателя обеспечивалось безопасное снижение. В конце 1928 г. авиасекцией Осоавиахима по проекту Н. И. Камова и Н. К. Скржинского был достроен первый советский автожир Каскр-1 («Красный инженер»).

В ходе создания этой модели был отработан шарнирно-сочленённый винт, у которого лопасти подвешены ко втулке на горизонтальных и вертикальных шарнирах. Это дало возможность каждой лопасти совершать маховые движения в вертикальной плоскости и колебательные в плоскости вращения. Кроме того, был освоен режим самовращения, что обеспечивало надёжность и безопасность полёта. Впоследствии на автожирах была отработана система управления циклическим и общим шагом несущего винта.

В Центральном аэрогидродинамическом институте (ЦАГИ) в конце 1926 г. был создан отдел особых конструкций, которым руководил Б. Н. Юрьев. Группа молодых инженеров занималась теоретическими и экспериментальными исследованиями, построила несколько моделей вертолётов. В основу первых опытных лёгких вертолётов была положена одновинтовая схема, как наиболее простая. В ходе предварительных исследований использовались специальные аэродинамические весы. На них устанавливали одновинтовой вертолёт с автоматом-перекосом и регулятором шага. Здесь в 1928-1929 гг. провели обширные исследования, которые позволили в довольно сжатые сроки спроектировать и построить вертолёт ЦАГИ-1-ЭА .

14 августа 1932 г. была открыта новая страница в истории советского вертолётостроения. В этот день вертолёт ЦАГИ-1-ЭА, пилотируемый профессором А. М. Черёмухиным, поднялся на высоту 605 м, что было крупнейшим техническим достижением тех лет. Вертолёт легко поднимался и опускался вертикально, делал повороты на месте, свободно перемещался во всех направлениях. Он был построен по одновинтовой схеме, имел четырёхлопастный винт диаметром 11 м, приводимый во вращение двумя ротативными двигателями мощностью по 120 л. с. Двигатели располагались по обеим сторонам фюзеляжа. Реактивный крутящий момент уравновешивался четырьмя хвостовыми винтами, установленными попарно на хвостах фюзеляжа.

Осенью 1933 г. был подготовлен к испытаниям вертолёт 5-ЭА конструкции И. П. Братухина. Эта машина имела хорошую устойчивость. На ней был установлен шестилопастный несущий винт оригинальной конструкции. Три длинные лопасти крепились на шарнирах, а три короткие - жёстко, то есть не могли поворачиваться вокруг собственных осей.

В 1940-1941 гг. вертолётное бюро Московского авиационного института под руководством И. П. Братухина спроектировало и построило двухвинтовой вертолёт «Омега » с двумя двигателями общей мощностью 440 л. с. Его максимальная скорость достигала 115 км/час, дальность полёта - 250 км.

Ещё в довоенные годы советские конструкторы провели большие экспериментальные работы с первыми образцами винтокрылых летательных аппаратов, которые во многом способствовали успешному решению основных проблем в области вертолётостроеиия. Отдельные автожиры были переданы в производство и изготовлялись в небольших сериях. Эскадрилья автожиров А-7 участвовала в боевых действиях в начальный период Великой Отечественной войны. Они действовали днём и ночью в тылу противника и в прифронтовой зоне. Это был первый опыт применения винтокрылых летательных аппаратов в военном деле.

В послевоенные годы благодаря заботам Коммунистической партии и Советского правительства нашими конструкторами созданы современные вертолёты, завоевавшие широкое признание в нашей стране и за рубежом.

В процессе развития советского вертолётостроеиия возникла и окрепла научная школа, крупнейшими представителями которой являются М. Л. Миль, Н. И. Камов, А. С. Яковлев и многие другие.

В конце 1947 г. было создано конструкторское бюро, возглавляемое доктором технических наук М. Л. Милем, под руководством которого был создан трёхместный вертолёт Ми-1 , получивший широкое практическое применение во многих областях народного хозяйства и в военной авиации.

На этом вертолёте устанавливался двигатель АИ-26В мощностью 575 л. с. Его крейсерская скорость - 130 км/час, дальность полёта - 370-600 км, высота - 3000 м. Вертолёт строился серийно в транспортном, сельскохозяйственном и санитарном вариантах. На Ми-1 было установлено 17 мировых рекордов для вертолётов с полётным весом от 1750 до 3000 кг.

В 1952 г. был запущен в серийное производство вертолёт Ми-4 , получивший золотую медаль на всемирной выставке в Брюсселе. Главному конструктору и его ближайшим помощникам за создание этого вертолёта была присуждена Ленинская премия. В то время Ми-4 превосходил по грузоподъёмности большие серийные американские вертолёты и, по общему признанию специалистов, был одним из самых надёжных вертолётов. На нём было установлено несколько мировых рекордов грузоподъёмности и скорости полёта.

В июне 1957 г. совершил свой первый полёт вертолёт Ми-6 , на котором было установлено два турбовинтовых двигателя. Ми-6 - один из самых скоростных вертолётов. За преодоление рубежа скорости 320 км/час, долгое время остававшейся пределом для винтокрылых машин, коллективу Миля был присуждён международный приз. На базе Ми-6 был создан гигантский летающий кран Ми-10 , который поднимал груз 25 т на высоту 2800 м.

Применение новых газотурбинных двигателей позволило создать второе поколение вертолётов «Ми», более грузоподъёмных, надёжных и значительно более экономичных. На смену Ми-1 пришёл Ми-2 , а Ми-4 был заменён вертолётом Ми-8 . Это экономичная, надёжная и относительно простая в эксплуатации машина. Сохранив габариты своего предшественника, вертолёта Ми-4, новый винтокрылый аппарат более чем в два раза превосходит его по коммерческой нагрузке и имеет значительно большую скорость полёта.

Очень хороший для своего времени высотный двигатель вертолёта Ми-4 при мощности в 1700 л. с. весил 1040 кг. Два двигателя конструкции С. П. Изотова, установленные на Ми-8, весят 660 кг, а мощность развивают в 3000 л. с.

Это в значительной мере определило увеличение производительности нового вертолёта как транспортного средства. Возросла и грузоподъёмность с 1200-1600 кг на Ми-4 до 3000 кг на Ми-8, а на малой дальности (в 100 км) до 4000 кг, крейсерская скорость соответственно увеличилась с 155 км/час до 220 км/час.

Таким образом, часовая производительность вертолёта выросла более чем в 3,5 раза, а вес пустой машины увеличился всего на 30 %.

Отношение часовой производительности к одной тонне веса пустой машины у Ми-8 в 3 раза больше, чем у его прототипа, что в значительной мере характеризует экономичность вертолёта как транспортного средства. Часовая производительность определяет полезную отдачу, а вес пустой машины - стоимость аппарата.

Соответственно возросшей грузоподъёмности была увеличена ёмкость грузовой кабины. Она шире и длиннее, чем на Ми-4. В пассажирском варианте в ней размещается 28 человек.

Вертолёт способен длительное время продолжать полёт на одном двигателе, что существенно повышает безопасность полёта. Значительно по сравнению с Ми-4 упрощает пилотирование и автомат оборотов, который обеспечивает не только их постоянство, но синхронизацию работы обоих двигателей. Одновременно в случае отказа одного из двигателей автоматически увеличивается мощность работающего.

Советские вертолёты Ми-6, Ми-10, Ми-8, представленные на авиационном и космическом салоне в Париже в 1965 году, вызвали сенсацию. Английская газета «Файнэшнл таймс» писала в те дни: «В Ле Бурже собрана внушительная армада советских аппаратов. На западных авиационных наблюдателей произвело большое впечатление их превосходное техническое состояние. Посмотрим, справятся ли русские с теми коммерческими джунглями, которые представляет ныне торговля самолётами на Западе, с её часто жестокой и ни перед чем не останавливающейся конкуренцией. Однако, если они выберут этот путь, в то их аппараты доставят западным коммерсантам много головной боли».

Бесспорно то, что немало советских вертолётов, проданных во многие страны мира, эксплуатируется в самых различных климатических условиях. Венцом в создании вертолётов конструкторским бюро, работавшим под руководством Миля, явился сверхгигант В-12 , поднявший груз сорок с лишним тонн на высоту больше двух километров. За это феноменальное достижение конструкторское бюро удостоилось высшей международной вертолётной награды.

Хорошими пилотажными качествами и почти полным отсутствием вибраций отличаются советские двухвинтовые соосные вертолёты Ка-10 , Ка-15 , Ка-18 , Ка-26 и другие, созданные коллективом конструкторов под руководством Н. И. Камова. На соосных двухвинтовых вертолётах реактивный момент несущих винтов взаимно уравновешивается, потому что винты вращаются с одинаковой скоростью и в противоположные стороны и потребляют одинаковые мощности. На вертолётах этой схемы отсутствует хвостовой винт.

Соосные вертолеты имеют минимальные габариты, хорошую маневренность. Например, поворот на 360° на месте вертолёт такой схемы совершает за 3-5 секунд. Уровень вибрации на соосных вертолётах минимальный. Мощность двигателя у них расходуется только на вращение несущих винтов и не тратится на хвостовой винт. Благодаря меньшему весу конструкции соосные вертолёты имеют большую весовую отдачу.

Вертолёт Ка-26 образно называют «летающие шасси». В зависимости от назначения меняется внешний вид машины. В пассажирском варианте вертолёт оборудован кабиной на 6 человек. Если откинуть сиденья, то в кабине можно перевозить грузы. В комплект вертолёта входит открытая грузовая платформа, которая подвешивается к центроплану вместо кабины. Груз можно подвешивать непосредственно на крюк. Тогда вертолёт превращается в летающий кран.

Основное же назначение Ка-26 - выполнение сельскохозяйственных работ. При подвеске бункера с соответствующей аппаратурой обеспечивается равномерное распыление, рассыпание или разбрызгивание химикатов. Вертолет Ка-26 - результат многолетней совместной работы конструкторского бюро и Аэрофлота , тщательного экономического анализа применения вертолётов в народном хозяйстве. Можно было бы создать машину специально для авиационно-химических работ на полях колхозов и совхозов. Она имела бы бункер с соответствующей аппаратурой, коробкой приводов и электрооборудованием (компрессор, генератор переменного тока для приведения в действие насосов опрыскивателя и т. п.).

Но расчёты показали, что такой вертолёт не будет экономичным, поскольку обработка полей - дело сезонное, и он простаивал бы по несколько месяцев в году без работы. Поэтому конструкторы решили создать многоцелевой вертолёт и успешно справились с этой задачей.

Одно из направлений развития винтокрылых аппаратов - машина с комбинированной несущей системой: несущие винты и крыло. Для поступательного полёта аппарат имеет тянущие винты. Он получил название винтокрыла. В обычном полёте винтокрыл взлетает вертикально, как вертолёт. Вся подъёмная сила (тяга) создаётся несущими винтами. При достижении скорости 60-80 км/час шаг тянущих винтов увеличивается, и тогда происходит дальнейший интенсивный разгон.

Вертолет летает потому, что сверху у него крутится большой несущий винт. У винта есть лопасти. Они по форме напоминают крылья самолета. И когда лопасти быстро крутятся на винте, возникает сила, которая поднимает эту машину в воздух.

У разных вертолетов на несущем винте – по-другому он называется ротором – может быть разное количество лопастей.

У вертолета средних размеров обычно бывает три лопасти.

Самые большие вертолеты, у которых четыре лопасти на несущем винте, могут одновременно перевозить много людей или большие грузы.
Они могут летать в разных направлениях.
Пилот, управляя вертолетом, может наклонить несущий винт влево. И тогда его воздушная машина начнет двигаться в сторону левого бока. А стоит наклонить несущий винт вправо, и машина станет двигаться в сторону правого бока.
Если наклонить ротор вперед или назад, то и вертолет будет двигаться вперед или назад – вот такая это послушная машина.
Вертолеты умеют даже зависать в воздухе. Такое свойство очень полезно для разных дел. И оно недоступно другим крылатым машинам.

Это интересно:
На самом верху вертолета укреплен большой пропеллер – ротор. Если ротор из горизонтального положения наклонить в ту или иную сторону, что может с помощью рычагов управления сделать пилот, то вертолет начнет двигаться именно в сторону наклона ротора. Потому что к подъемной силе вращающихся лопастей прибавляется еще и сила их поступательного горизонтального движения. На хвосте у каждого вертолета есть дополнительный маленький пропеллер. Он расположен вертикально и нужен для того, чтобы вертолет не закручивало при работе главного несущего винта.